Python:
Building Skills
for Software
Development

Dr Mahendra Singh Bora [PhD (CS), MCA, PGDCA]
[mahendra.singh.bora @ gmail.com]

Mr Bhupendra Singh Latwal [NET (CS), MCA, MTECH]
[blatwal @ gmail.com]

Mrs Shivangi Verma [MCA, MTECH]
[shivangi0007 @ gmail.com]

Published by

Singh Publication
78/77, New Ganesh Gan;,
Opposite Rajdhani Hotel, Aminabad Road
LUCKNOW- 226018 UTTAR PRADESH, INDIA
Email : info@singhpublication.com | https://singhpublication.com

Copyright © Author

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechanical
including photocopy, recording or by any information storage and
retrieval system, without permission in writing from the copyright
owner.

ISBN Dol
978-81-964979-1-0 10.5281/zenodo.10894298

First Published
March 2024

All disputes are subject to Lucknow jurisdiction only.

Printed At
Yellow Print,
G-4, Goel Market, Lekhraj Metro Station,
Indiranagar, Lucknow, India.
Ph: +91-7499403012
E-mail: yellowprints12 @ gmail.com

AUTHORS ARE FULLY LIABLE FOR ORIGINALITY AND WORDING

Every effort has been made to avoid errors or omissions in this publication. In
spite of this, some errors might have crept in. Any mistake, error or discrepancy
noted may be brought to our notice which shall be taken care of in the next
edition. It is notified that neither the publisher nor the author or seller will be
responsible for any damage or loss of action to anyone, of any kind, in any
manner, therefrom. For binding mistakes, misprints or for missing pages etc.,
the publisher's liability is limited to replacement within one month of purchase by
similar edition. All expenses in this condition are to be borne by the purchaser.

Content

Preface

Acknowledgements

Chapter1:

Chapter 2:

Chapter 3:

Chapter 4:

Chapter 5:

Chapter 6:

Introduction to Python

Whatis Python?

Installation and Setup

Your First Python Program
Python Development Environments
Python Basics

Variables and Data Types
Operators and Expressions
Control Flow (if, else, and while)
Functions and Modules

Data Structures in Python
Lists

Tuples

Dictionaries

Sets

Strings

Object-Oriented Programming (OOP)
Classes and Objects

Inheritance and Polymorphism
Encapsulation and Abstraction
Exception Handling

File Handling

Reading and Writing Files
Working with CSV and JSON
Error Handling in File Operations
Advanced PythonTopics
Decorators and Generators
Context Managers
Multithreading and Multiprocessing
Regular Expressions

Working with Dates and Times
Virtual Environments

(1-8)

(9-19)

(20-30)

(31-39)

(40-47)

(48-59)

Python: Building Skills for Software Development

Chapter 7: Python Standard Library
Commonly Used Modules (e.g., 0s, sys, math, random)

The date time Module
File and Directory Operations
Network Programming (sockets)

Chapter 8:Web Development with Python

Introduction to Web Development
Flask and Django Frameworks
Building a Simple Web Application

Working with Databases (SQL and NoSQL)

Chapter 9: Data Science and Python

NumPy and NumPy Arrays
Data Manipulation with Pandas

(60-71)

(72-85)

(86-95)

Data Visualization with Matplotlib and Seaborn
Chapter 10:Testing and Debugging

Writing Tests with unittest
Debugging Techniques
Best Practices

Chapter 11: Deployment and Packaging

Packaging Your Python Application
Deploying Python Applications
Virtual Environments for Isolation

Chapter 12: Advanced Python Concepts

Metaclasses
Design Patterns in Python
Functional Programming in Python

Chapter 13: Real-World Projects

Building a Command-Line Tool
Developinga Web Application
Data Analysis and Visualization Project

Chapter 14: Appendices

Python 2 vs. Python 3
Python Resources
Glossary of Terms

Lab Practice

(96-101)

(102-109)

(110-116)

(117-124)

(125-130)

(131-170)

Python: Building Skills for Software Development

Preface

This book is designed to be a comprehensive resource for both
beginners and experienced programmers who want to learn or
expand their knowledge of the Python programming language.
Python is known for its simplicity and versatility, making it an ideal
language for a wide range of applications, from web development to
data science.

WhoThis Bookls For

Beginners: If you're new to programming, this book will provide you
with a gentle introduction to Python, starting with the basics and
gradually building your skills.

Intermediate Programmers: If you have some programming
experience but want to dive into Python, this book will help you
transition smoothly and master the language's advanced features.

Experienced Python Developers: Even if you're already familiar
with Python, you'll find value in the book's in-depth coverage of
advanced topics, best practices, and real-world projects.

WhatYouWill Learn
* Thebook covers a wide range of Python topics, including:
* Python syntax and basic programming concepts
e Data structures like lists, dictionaries, and sets
e Object-oriented programming (OOP) and design principles
* File handling and working with external data
* Advanced Python topics like decorators and generators
* Web development with Python, using Flask and Django
* Data science and data analysis with Python libraries
* Testing, debugging, and deployment best practices
* Real-world projects to apply your knowledge

Python: Building Skills for Software Development

HowThis Book Is Organized

The book is divided into chapters, with each chapter focusing on a
specific aspect of Python. We encourage you to read the chapters
sequentially if you're new to Python, as they build upon each
other.However, experienced programmers may find it useful to skip
to specific chapters based on their interests or needs.

Code Examples

Throughout the book, you'll find numerous code examples and
exercises. You can practice by typing out the code and
experimenting with it in your Python environment. Code samples are
available for download from our website.

Conventions Used inThis Book

e Code examples are displayed in a monospaced font like this:
print("Hello, World!").

* Important concepts and key terms are highlighted in bold.

Feedback and Corrections

We appreciate your feedback and any corrections you may discover.
Please email us or contact us through our publisher to provide
feedback orreport any errors.

We hope you find this book to be a valuable resource on your journey
to mastering Python. Whether you're looking to start a new career,
enhance your skills, or simply have fun with programming, Python
has something to offer you. Enjoy your learning journey!

Python: Building Skills for Software Development

(Acknowledgements)

Firstand foremost, | would like to express my deepest gratitude to the
Python community. The open-source nature of Python and the
collaborative spirit of its community have been instrumental in the
creation of this book.

| would also like to thank my colleagues and friends in the
programming world who have provided invaluable feedback and
insights throughout the writing process. Your expertise and
encouragement have been greatly appreciated.

Special thanks go to my editor and the publishing team for their
patience, guidance, and hard work in bringing this book to life.

Lastly, | want to acknowledge all the readers of this book. Whether
you are a beginner just starting your coding journey or an
experienced developer looking to expand your skills, | hope this book
will be a useful resource in your programming endeavors.

Thank you to everyone who contributed to this project in various
ways. Your support has been invaluable, and we appreciate each
and every one of you.

Warm regards,

Dr Mahendra Singh Bora [PhD (CS), MCA, PGDCA]
[mahendra.singh.bora@ gmail.com]

Mr Bhupendra Singh Latwal [NET(CS), MCA, MTECH]
[blatwal @ gmail.com]

Mrs Shivangi Verma [MCA, MTECH]
[shivangi0007 @ gmail.com]

Python: Building Skills for Software Development

Chapter 1
Introduction to Python
Programming

Python: Building Skills for Software Development

01

Chapter 1 Introduction to Python Programming
What is Python

Python is a high-level, versatile, and easy-to-learn programming
language known for its simplicity and readability. It was created by
Guido van Rossum and first released in 1991. Python has gained
immense popularity over the years and is widely used in various
fields, including web development, data analysis, scientific
computing, artificial intelligence, and more. Here are some key
characteristics and uses of Python:

Readability: Python's syntax is designed to be clear and easy to
understand, making it an excellent choice for beginners and
experienced developers alike. The use of indentation (whitespace)
for code blocks enhances code readability.

Versatility: Python is a general-purpose programming language,
meaning it can be used for a wide range of applications. You can write
scripts, build web applications, create desktop software, perform
data analysis, and even develop games using Python.

Large Standard Library: Python comes with a comprehensive
standard library that includes modules and packages for a variety of
tasks, from working with files and data to web development and
more. This extensive library reduces the need to write code from
scratch and accelerates development.

Community and Ecosystem: Python has a large and active
community of developers. There are countless open-source libraries
and frameworks available for Python, making it easier to find
solutions for specific tasks. Some popular libraries include NumPy,
Pandas, Django, Flask, TensorFlow, and many others.

Cross-Platform: Python is available on various platforms, including
Windows, macOS, and Linux. You can write code on one platform
and run it on another without significant modifications.

02 | Python: Building Skills for Software Development

Chapter 1 Introduction to Python Programming

Interpreted Language: Python is an interpreted language, meaning
you don't need to compile your code before running it. This makes the
development process more agile and user-friendly.

Dynamic Typing: Python uses dynamic typing, which means you
don't need to declare the data type of a variable explicitly. Python
determines the data type dynamically during runtime.

Open Source: Python is open-source and freely available. This
makes it accessible to anyone who wants to use and contribute to its
development.

Highly Extensible: Python can be easily extended with modules and
packages written in other languages like C or C++. This allows for
high performance and compatibility with existing code bases.

Scientific and Data Analysis: Python is widely used in scientific and
data analysis, thanks to libraries like NumPy, Pandas, and Matplotlib.
It's a popular choice for data scientists and researchers.

Web Development: Python offers various frameworks for web
development, such as Django and Flask, which simplify the process
of building web applications.

Artificial Intelligence and Machine Learning: Python is a go-to
language for artificial intelligence and machine learning projects.
Libraries like TensorFlow, Keras, and scikit-learn provide powerful
tools for Al and ML development.

Automation and Scripting: Python is often used for automating
tasks, creating scripts, and simplifying repetitive activities, makingita
valuable tool for system administrators and DevOps professionals.

In summary, Python is a versatile and powerful programming
language that is widely used in many fields due to its simplicity,
readability, and the extensive ecosystem of libraries and frameworks
available. It's an excellent choice for both beginners and experienced
developers looking to solve a wide range of problems efficiently.

Python: Building Skills for Software Development | 03

Chapter 1 Introduction to Python Programming

Installation and Setup

Setting up Python on your computer is typically a straightforward
process, and there are different approaches to install and configure
Python depending on your operating system. Here are general steps
forinstalling and setting up Python:

Step 1: Choose a Python Version: Python has two major versions in
use: Python 2 and Python 3. It's recommended to use Python 3, as
Python 2 is no longer actively maintained. Choose the latest Python 3
version available.

Step 2: Download Python:

e Visit the official Python website at python.org and click on the
"Downloads" section.

e Select the version of Python you want to install (e.g., Python
3.9.7).

e Choose the installer appropriate for your operating system
(Windows, macOS, or Linux).

Step 3: Run the Installer: Note: The following steps may vary
slightly depending on your operating system.
ForWindows:

* Double-click the downloaded installer.

e Make sure to check the box that says "Add Python x.x to
PATH" during installation to make Python accessible from the
command line.

* Followthe installation prompts and complete the setup.

For macOS:
* Double-click the downloaded package file.

* Follow the installation instructions, and Python will be
installed on your system.

04 | Python: Building Skills for Software Development

Chapter 1 Introduction to Python Programming

For Linux:
e Openaterminal.
¢ Navigate to the directory where you downloaded the installer.

* Run the following commands (replace python3.x.x with the
version you downloaded):

tar -xvf Python-3.x.x.tgz
cd Python-3.x.x
Jconfigure

make

sudo make install

Step 4:Verify Installation:

To ensure that Python was installed correctly, open a command
prompt or terminal and type:

python--version

This should display the version of Python you installed. If it
doesn't, try running:

python3 --version
This will verify the installation of Python 3.

Step 5: Install a Text Editor or Integrated Development
Environment (IDE):

You can write Python code in any text editor, but using an IDE
designed for Python development can enhance your coding
experience. Some popular Python IDEs include PyCharm, Visual
Studio Code, and Jupyter Notebook.

Your First Python Program

Your first Python program is often a simple "Hello, World!" program.
Here's how you can write and run your first Python program:

Python: Building Skills for Software Development | 05

Chapter 1 Introduction to Python Programming

Open aText Editor: You can use any text editor to write your Python
code. Notepad (on Windows), TextEdit (on macOS), or a code-
focused editor like Visual Studio Code, PyCharm, or IDLE are good
choices.
Write the Python Code:Open your text editor and write the following
code:
print("Hello,World!")
This code uses the print() function to display the text "Hello, World!"
onthe screen.
Save theFile:
* Give your file a name, such as hello.py. The .py extension
indicates that this is a Python script.
e Choose alocation to save yourfile.
Run the Python Program:
The steps for running your Python program depend on your operating
system:

ForWindows:
e Openthe Command Prompt (you can search for "cmd" in the
Start menu).

* Navigate to the directory where you saved your hello.py file
using the cd command.

* Runthe program by typing:
python hello.py
FormacOS and Linux:
e Openthe Terminal.
* Navigate to the directory where you saved your hello.py file
using the cd command.
* Runthe program by typing:
python3 hello.py
After running the program, you should see "Hello, World!" displayed
on the screen. Congratulations! You've successfully written and
executed your first Python program. This simple example is just the
beginning. As

06 | Python: Building Skills for Software Development

Chapter 1 Introduction to Python Programming

you continue your Python journey, you'll explore more complex
programs and learn about the language's features and capabilities.

Python Development Environments

When working with Python, you have a variety of development
environments (IDEs) and code editors to choose from. The choice of
environment largely depends on your personal preferences and
project requirements. Here are some popular Python development
environments and code editors:

Integrated Development Environments (IDEs):

PyCharm:

PyCharmis a highly regarded IDE for Python development. It offers a
wide range of features, including code completion, debugging, and
support for web development with Django and Flask.

Visual Studio Code (VSCode):

VSCode is a lightweight, open-source code editor developed by
Microsoft. It has an extensive library of Python extensions that
provide features like IntelliSense, debugging, and integrated
terminals.

Jupyter Notebook:

Jupyter Notebook is an open-source web application that allows you
to create and share documents that contain live code, equations,
visualizations, and narrative text. It's widely used in data science and
scientific computing.

Spyder:

Spyder is a scientific IDE specifically designed for data science and
scientific development. It comes with built-in support for popular
scientific libraries like NumPy and Matplotlib.

PyDev:

PyDev is an IDE for Python that can be integrated with the Eclipse
platform. It provides features like code analysis, debugging, and
code completion.

Python: Building Skills for Software Development | 07

Chapter 1 Introduction to Python Programming

Thonny:

Thonny is a beginner-friendly Python IDE designed to make learning
Python easy. It comes with a built-in package manager, debugger,
and simple interface.

Code Editors:
SublimeText:

Sublime Text is a lightweight, highly customizable code editor. You
can enhance it with Python-specific plugins and extensions.

Atom:

Atom is an open-source code editor developed by GitHub. It's highly
customizable and has a large community, which means there are
many Python-related packages available.

Notepad++:

Notepad++ is a popular text editor for Windows. While it's not an IDE,
it supports Python syntax highlighting and can be used for basic
Python scripting.

Geany:

Geany is a lightweight code editor with basic IDE features. It supports
Python and allows for customizations.

IDLE (Python's Built-In IDE):

Python comes with its integrated development and learning
environment called IDLE. While it's not as feature-rich as other IDEs,
it's a good choice for beginners.

Each of these development environments and code editors has its
own strengths and features. The best choice for you will depend on
your specific needs, your familiarity with the tools, and your personal
preferences. It's a good idea to try out a few of them to see which one
you're most comfortable and productive with in your Python
development.

08 | Python: Building Skills for Software Development

Chapter 2
Python Basics

Python: Building Skills for Software Development

09

Chapter 2 Python Basics

Variables and Data Types

In Python, variables are used to store and manipulate data. Python is
a dynamically-typed language, which means you don't need to
declare the data type of a variable explicitly. The data type is
determined dynamically during runtime. Python supports various
datatypes, including:

1.

Integers (int): Whole numbers, such as -5, 0, 42.
Example:
age=30
Floating-Point Numbers (float): Numbers with a decimal point,
suchas 3.14,-0.5.
Example:
temperature =98.6

Strings (str): Text or sequences of characters enclosed in single
('"), double (" "), ortriple ("' 'or""" ") quotes.

Example:
name = "ram
message = 'Hello, World!'

Boolean (bool): Represents either True or False. Boolean
values are often used for conditional statements and logical
operations.

Example:
is_student=True
is_adult=False

Lists: Ordered collections of items. Lists can contain elements of
different data types.

Example:
fruits =["apple", "banana", "cherry"]
numbers=[1,2, 3,4, 5]

Tuples: Similar to lists but immutable, meaning their values
cannot be changed once set.

Example:
coordinates = (3, 4)

10

| Python: Building Skills for Software Development

Chapter 2 Python Basics

7. Dictionaries: Collections of key-value pairs. Each key is unique
and associated with a value.

Example:
person ={"name": "Alice", "age": 30, "city": "New York"}
2. Sets: Unordered collections of unique items.
Example:
unique_numbers={1,2, 3,4, 5}

3. NoneType (NoneType): Represents the absence of a value or a
null value.

Example:
result=None

You can assign values to variables and perform various operations
with these data types. For example, you can perform arithmetic
operations on integers and floating-point numbers, concatenate
strings, use conditional statements with booleans, and more.

Here's a simple example that demonstrates the use of variables
and data types:

#Variables and data types
name = "ram"
age=30
height=5.7
is_student=True
fruits =["apple", "banana", "mango"]
person ={"name": "mohan", "age": 25}
Printing variable values
print(name) #"ram"
print(age) #30
print(height) #5.7
print(is_student) #True
print(fruits) #["apple", "banana", "mango"]
print(person) #{"name": "mohan", "age": 25}

Python: Building Skills for Software Development | 11

Chapter 2 Python Basics

Python's dynamic typing and rich set of data types make it a versatile
language for various applications and data manipulation tasks.

Operators and Expressions

In Python, operators and expressions are fundamental concepts that
allow you to perform various operations and calculations. Operators
are symbols that represent operations, and expressions are
combinations of values and operators that produce a result. Python
supports a wide range of operators and allows you to create complex
expressions. Here are some of the most commonly used operators
and how they work:

Arithmetic Operators:

e Addition (+): Adds two values.

* Subtraction (-): Subtracts the right operand from the left
operand.

e Multiplication (*): Multiplies two values.

* Division (/): Divides the left operand by the right operand,
producing a floating-point result.

* Integer Division (//): Divides the left operand by the right
operand, producing an integer result.

e Modulus (%): Returns the remainder after division.

e Exponentiation (**): Raises the left operand to the power of the
right operand.

Example:
x=10
y=3
addition=x+y #13
division=x/y # 3.3333...
modulus =X % y #1

Comparison Operators:

e Equal (==): Compares iftwo values are equal.
e NotEqual (! =): Compares if two values are not equal.

e Greater Than (>): Checks if the left operand is greater than the
right operand.

12 | Python: Building Skills for Software Development

Chapter 2 Python Basics

* Less Than (<): Checks if the left operand is less than the right
operand.

e Greater Than or Equal To (>=): Checks if the left operand is
greaterthan or equal to the right operand.

* Less Than or Equal To (<=): Checks if the left operand is less
than or equal to the right operand.

Example:
a=>5
b=7

is_equal = a ==b # False
is_not_equal = a !=b #True
Logical Operators:
* Logical AND (and): Returns True if both operands are True.

* Logical OR (or): Returns True if at least one of the operands is
True.

e Logical NOT (not): Negates the value of the operand.

Example:
x = True
y = False
logical_and = x and y # False
logical_or=xory # True
logical_not = not x # False

Assignment Operators:
e Assignment (=): Assigns a value to a variable.

* Increment (+=): Adds the right operand to the left operand and
assigns the result to the left operand.

* Decrement (-=): Subtracts the right operand from the left
operand and assigns the result to the left operand.

e Multiply (*=): Multiplies the left operand by the right operand and
assigns the result to the left operand.

* Divide (/=): Divides the left operand by the right operand and
assigns the resultto the left operand.

Python: Building Skills for Software Development | 13

Chapter 2 Python Basics

Example:
count=0

count +=1 #Increment count by 1

Bitwise Operators: These operators perform operations on
individual bits of integers.

* Bitwise AND &

* Bitwise OR|
e Bitwise XORA
¢ Bitwise NOT ~

e Left Shift<<
* Right Shift>>
Example:
a=5 #binary code - 101
b=6 #binary code-110
c=a&b
d=al|b
e=a’b
f=~a
g=b<<2
h=b>>2
Membership Operators:

* in: Returns True if a value is found in a sequence (e.g., a list,
string, ortuple).

e notin: Returns Trueif avalue is notfoundin a sequence.

Example:
fruits =["apple", "banana", "cherry"]
is_apple_in_list="apple" in fruits #True
is_mango_in_list="mango" notin fruits #True
Identity Operators:

* is: Returns True if both variables refer to the same object.
* isnot: Returns True if both variables refer to different objects.

14 | Python: Building Skills for Software Development

Chapter 2 Python Basics

Example:

x=[1,2,3]

y=X

is_same_object=xisy #True
Ternary Operator:

* Conditional Expression x if condition else y: Returns x if the
conditionis True, otherwise returnsyy.

Example:

age=25

category ="Adult" ifage >= 18 else "Minor" #"Adult”
Operator Precedence:

Operators in Python have different levels of precedence. For
example, multiplication (*) has higher precedence than addition (+).
You can use parentheses to control the order of operations.

Example:
result=(5+2)*3 # Parentheses take precedence, resultis 21
These are some of the most commonly used operators in Python.

You can combine them to create complex expressions and perform a
wide range of operations in your Python programs.

Control Flow (if, else, and while)

Control flow in Python refers to the order in which statements and
instructions are executed. Python provides various control flow
constructs, including if statements for conditional execution and
while loops for repeated execution. Here's an overview of these
control flow constructs:

1. Conditional Statements (if, elif, and else):

Conditional statements are used to execute different blocks of code
based on certain conditions. The primary conditional statement is
theif statement, and it may be followed by zero or more elif (short
for "else if") and an optional else block.

if condition1:
Code to execute if condition1 is True

Python: Building Skills for Software Development 15

Chapter 2 Python Basics

elif condition2:
Code to execute if condition2 is True
else:
Code to execute if none of the above conditions are True
Example:
age=25
ifage<18:
print("You are a minor.")
elifage>=18:
print("You are an adult.")
else:
print("Age is not defined.")
2. Loops (while and for):
Loops are used to repeatedly execute a block of code. In Python, you
can use while and for loops.

while Loop:
A while loop repeatedly executes a block of code as long as a
specified conditionis True.

while condition:
Code to execute while the conditionis True
Example:
count=0
while count < 5:
print(f"Count: {count}")
count+=1
for Loop:

A for loop is used to iterate over sequences, such as lists, tuples,
strings, or other iterable objects.

for variable initerable:
Code to execute for each itemin the iterable
Example:
fruits =["apple", "banana", "cherry"]
for fruitin fruits:
print(f"Current fruit: {fruit}")

16 | Python: Building Skills for Software Development

Chapter 2 Python Basics

3. Break and Continue Statements:

* The break statement is used to exit a loop prematurely. It is often
used to stop aloop when a certain condition is met.

e The continue statement is used to skip the current iteration of a
loop and continue to the next one.

Example (using break):
numbers=[1,2,3,4,5,6,7,8,9, 10]
fornumberin numbers:

if number==>5:
break # Exitthe loop when numberis 5
print(number)

Example (using continue):
numbers=[1,2,3,4,5,6,7,8,9, 10]
for numberin numbers:

if number %2 ==0:
continue # Skip even numbers
print(number)

Control flow constructs are essential for making decisions, looping
through data, and controlling the execution of your Python programs.
They allow you to create more dynamic and interactive applications.

Functions and Modules

Functions and modules are essential concepts in Python that help
you organize and modularize your code. They allow you to break
down complex programs into smaller, more manageable parts,
making your code more readable, maintainable, and reusable.
Here's an overview of functions and modules in Python:
Functions:
Defining a Function:
To define a function in Python, you use the def keyword followed by
the function name and a pair of parentheses. You can also specify
parameters within the parentheses, which are the inputs to the
function.

def greet():

print("Hello, Ram!")

Python: Building Skills for Software Development 17

Chapter 2 Python Basics

Calling a Function:

To execute a function, you call it by using its name followed by
parentheses. If the function expects parameters, you provide them
within the parentheses.

greet()
ReturnValues:

Functions can return values using the return statement. This allows a
function to produce a result that can be used in other parts of your
program.

defadd():
xX=7
y=10
result=x+y
return result
Function Parameters:

Functions can accept parameters, which are values passed into the
function when it is called. These parameters can be used within the
function's body.

def multiply(a, b):
result=a*b
return result

Default Parameters:

You can assign default values to function parameters, making them
optional. If a value is not provided when the function is called, the
default value is used.

def greet(name="User"):
print(f"Hello, {name}!")
Modules:
Creating aModule:

A module in Python is a file containing Python code. You can create
your own modules by organizing related functions and variables
within a.pyfile.

18 | Python: Building Skills for Software Development

Chapter 2 Python Basics

Example: Create a file named my_module.py with the following
content:

defsquare(x):
return x ** 2

defcube(x):
return x ** 3
Using aModule:

To use functions and variables defined in a module, you need to
import the module in your Python code. You can then access the
module's content using dot notation.

import my_module
result=my_module.square(5)
Namespace:

When you import a module, it creates a separate namespace for the
module's content. This prevents naming conflicts with other variables
and functions in your code.

Renaming a Module:

You can give a module an alias using the as keyword, which makes it
easier to reference the module.

import my_module as mm
result=mm.cube(4)
Importing Specific ltems:

You can import specific functions or variables from a module instead
of importing the entire module.

from my_module import square
result=square(6)

Functions and modules are fundamental to structuring and
organizing code in Python. They help you achieve better code
reusability, maintainability, and readability. By creating and using
functions and modules effectively, you can build complex programs
more efficiently.

Python: Building Skills for Software Development | 19

Chapter 3
Data Structure
in Python

20

Python: Building Skills for Software Development

Chapter 3 Data Structure in Python

Python offers a variety of built-in data structures that you can use to
organize and manipulate data efficiently. These data structures are
fundamental to many programming tasks and are crucial for solving a
wide range of problems. Here are some of the most commonly used
data structures in Python:

List

A listis a versatile and commonly used data structure that allows you
to store and manipulate a collection of items. Lists are ordered,
mutable, and can contain elements of different data types. This is one
of the fundamental data structures in Python. Here's how you can
work with lists:

Creating a List:

To create a list, you enclose a comma-separated sequence of items
within square brackets []. The items can be of different data types,
including numbers, strings, and other objects.

fruits =["apple", "banana", "cherry"]
numbers=[1, 2, 3,4, 5]
mixed =["apple", 2, 3.14, True]

Accessing List Elements:

You can access individual elements of a list using indexing. Python
uses 0-based indexing, so the first element is at index 0, the second
atindex 1,andsoon.

fruits =["apple", "banana", "cherry"]
print(fruits[0]) # "apple"
print(fruits[1]) # "banana"

You can also use negative indexing to access elements from the end
ofthe list:

print(fruits[-1]) #"cherry"
Modifying Lists:
Lists are mutable, which means you can change their contents. You
can modify, add, or remove elements.

Python: Building Skills for Software Development | 21

Chapter 3 Data Structure in Python

Modifying an element by assigning a new value to a specific

index:

fruits = ["apple", "banana", "cherry"]

fruits[1] = "orange"

print(fruits) # ["apple", "orange", "cherry"]
Adding elements with the append() method:

fruits = ["apple", "banana"]

fruits.append("cherry")
print(fruits) # ["apple", "banana", "cherry"]

Inserting elements with the insert() method:
fruits = ["apple", "banana"]

fruits.insert(1, "cherry")
print(fruits) # ["apple", "cherry", "banana"]

Removing elements with the remove() method:

fruits = ["apple", "banana", "cherry"]

fruits.remove("banana")

print(fruits) # ["apple", "cherry"]
Removing elements by index with the pop() method:

fruits = ["apple", "banana", "cherry"]
removed_fruit = fruits.pop (1)

Removes and returns the second element
print(removed_fruit) # "banana"
print(fruits) # ["apple", "cherry"]

Slicing lists to extract a portion of the list:
numbers =[1, 2, 3, 4, 5]
subset = numbers[1:4]
print(subset) # Returns a new list [2, 3, 4]

List Operations:

Concatenating lists with the + operator:
list1 =[1, 2, 3]

list2 = [4, 5, 6]
result = list1 +list2 #[1, 2,3, 4,5, 6]

22 | Python: Building Skills for Software Development

Chapter 3 Data Structure in Python

Repeating a list with the * operator:

fruits = ["apple"]
fruits *= 3 # Repeats the list three times

Result: ["apple", "apple", "apple"]
List Methods:

Python provides several built-in list methods for various operations,
such as sorting, counting, and finding elements. Some common list
methods include sort(), len(), count(), and index(). You can refer to
Python's official documentation for a complete list of list methods.

Lists are versatile and widely used in Python for storing and
manipulating collections of data. They are a fundamental data
structure and play a crucial role in many programming tasks.

Tuples

Atuple is a versatile data structure that is similar to a list but with a key
difference: tuples are immutable, which means their elements cannot
be modified after creation. Tuples are often used to represent
collections of related data, and they can contain elements of different
data types. Here's how you can work with tuples:

Creating aTuple:
To create a tuple, you enclose a comma-separated sequence of
items within parentheses (). Unlike lists, tuples are fixed and cannot
be modified once created.

coordinates = (3, 4)

rgb_color= (255, 0, 0)

mixed_tuple = ("apple", 2, 3.14, True)
AccessingTuple Elements:
You can access individual elements of a tuple using indexing, just like
with lists. Python uses 0-based indexing.

coordinates = (3, 4)

x = coordinates[0] #xwillbe 3

y =coordinates[1] #ywillbe4
You can also use negative indexing to access elements from the end
ofthe tuple:

last_element = coordinates[-1] # last_element will be 4

Python: Building Skills for Software Development | 23

Chapter 3 Data Structure in Python

Tuple Unpacking:

You can assign the elements of a tuple to multiple variables in a
single line, a process known as tuple unpacking.

coordinates = (3, 4)
X,y =coordinates #xwillbe3 #ywillbe4

ModifyingTuples:

As mentioned earlier, tuples are immutable. You cannot change the
values of elements or add or remove elements from a tuple.
Attempting to do so will resultin an error.

Tuple Operations:
Concatenating tuples with the + operator:

tuple1=(1,2,3)
tuple2=(4, 5, 6)
result=tuple1 +tuple2 #(1,2,3,4,5,6)

Repeating a tuple with the * operator:
fruits = ("apple",)

fruits *=3 # Repeats the tuple three times
print(fruits) # Result: ("apple", "apple", "apple")
Tuple Methods:

Tuples are simple data structures, so they have fewer built-in
methods compared to lists. Some common methods include count()
to count the occurrences of a specific element and index() to find the
index of a specific element within the tuple.

When to UseTuples:

Tuples are preferred in situations where you want to create a
collection of values that should not be changed. Some common use
cases fortuplesinclude:

* Representing fixed, unchangeable data (e.g., coordinates).

* Returning multiple values from a function.

* Using tuples as keys in dictionaries (since they are immutable)
when you want to create custom data structures for lookups.

While tuples lack the flexibility of lists, their immutability can be an
advantage in scenarios where you need to ensure that the data
remains constant.

24 | Python: Building Skills for Software Development

Chapter 3 Data Structure in Python

Dictionaries

A dictionary is a versatile and fundamental data structure used to
store and manage collections of key-value pairs. Dictionaries are
also known as associative arrays or hash maps. They are unordered
and mutable, which means you can change their contents after
creation. Here's how you can work with dictionaries:

Creating aDictionary:

To create a dictionary, you enclose a comma-separated sequence of
key-value pairs within curly braces {}. Each key is associated with a
value, and the key-value pairs are separated by colons (:).

person ={"name": "ram", "age": 30, "city": "ayodhya"}
student = {"student_id": 12345, "name": "mohi", "grades": [90, 85,
92]}

Accessing Dictionary Elements:

You can access the values associated with keys using the square
bracket notation. Provide the key within square brackets to retrieve
the associated value.

person={"name": "ram", "age": 30, "city": "ayodhya"}
name = person['name"] # name will be "ram"
age =person['age"] #age will be 30

You can also use the get() method to access dictionary values. This
method allows you to provide a default value in case the key does not
existin the dictionary.

city = person.get(“city", "Unknown City") # city will be "ayodhya"

country = person.get("country”, "Unknown Country")
country will be "Unknown Country"
Modifying Dictionaries:

Dictionaries are mutable, which means you can change their
contents. You can add, update, or remove key-value pairs.

Adding a new key-value pair:

person={"name": "anand", "age": 14}
person["city"] = "nainital"

Python: Building Skills for Software Development 25

Chapter 3 Data Structure in Python

Updating an existing value by specifying the key:

person["age"] = 31 # Updates the age from 30 to 31
Removing a key-value pair using the del statement:
del person[“age"] # Removes the "age" key-value pair

Dictionary Operations:
Checking if a key exists in a dictionary using the in keyword:

person ={"name": "palak", "city": "kashipur"}
if "age" in person:

print("Age exists in the dictionary")
else:

print("Age does not exist in the dictionary")

Getting the number of key-value pairs in a dictionary using the
len() function:

person ={"name": "lakshay", "age": 14, "city": "bajpur"}
count=len(person) #countwillbe 3

Copying adictionary using the copy() method:

original_dict={"name": "palak", "age": 11, "city": "bajpur"}
copy_dict = original_dict.copy()

Dictionary Methods:

Python provides several built-in methods for working with
dictionaries. Some common dictionary methods include keys(),
values(), and items() to retrieve keys, values, and key-value pairs,
respectively.

Dictionaries are widely used in Python for various tasks, such as
representing structured data, managing configurations, and creating
efficient lookup tables. They are particularly useful when you need to
associate keys with values and retrieve values based on their keys.

Sets

A set is an unordered and mutable collection of unique elements.
Sets are often used for tasks that involve mathematical operations
like union, intersection, and difference. They are represented using
curly braces {} or the set() constructor. Here's how you can work with
sets:

26 | Python: Building Skills for Software Development

Chapter 3 Data Structure in Python

Creating a Set:

To create a set, you can use curly braces {} and enclose a comma-
separated sequence of elements, or you can use the set()
constructor with an iterable (e.g., a list).

fruits = {"apple", "banana", "cherry"}
numbers =set([1, 2, 3, 4, 5])
Accessing Set Elements:

Sets are unordered, so you cannot access elements by index. You
can, however, check for the presence of an element using the in
keyword.

fruits = {"apple", "banana", "cherry"}
is_apple_in_set="apple" in fruits # True
Modifying Sets:
Sets are mutable, which means you can add and remove elements.
Adding elements using the add() method:
fruits = {"apple", "banana"}
fruits.add("cherry")
Removing elements using the remove() or discard() method:
fruits = {"apple", "banana", "cherry"}
fruits.remove("banana")
#or
fruits.discard("cherry")
If you attempt to remove an element that doesn't exist in the set using
remove(), it will raise a KeyError. discard(), on the other hand, won't
raise an error.
Set Operations:
Sets support various set operations like union, intersection,
difference, and symmetric difference.
Union (combining two sets):
set1={1,2,3}
set2={3, 4, 5}
union_result=set1.union (set2) #{1,2, 3, 4,5}
Intersection (common elements between two sets):
set1={1,2,3}
set2={3, 4, 5}
intersection_result = set1.intersection (set2) # {3}

Python: Building Skills for Software Development 27

Chapter 3 Data Structure in Python

Difference (elements in one set but not the other):

set1={1,2,83}

set2={(3, 4,5}

difference_result = set1.difference (set2) # {1,2}

Symmetric Difference (elements in either set but not both):
set1={1,2,3}

set2={3, 4,5}

symmetric_difference_result = set1.symmetric_difference (set2) #
{1,2,4,5}

Set Methods:

Python provides various built-in methods for sets, such as add(),
remove(), discard(), union(), intersection(), difference(),
symmetric_difference(), clear(), copy(), and more.

Sets are useful for various tasks, including removing duplicates from
a list, checking for membership, and performing set operations like
union and intersection. They are particularly efficient for membership
testing because they use a hash-based data structure, ensuring that
lookup operations are fast even for large collections.

Strings

A string is a sequence of characters, and it is one of the most
commonly used data types. Strings are immutable, which means
their contents cannot be changed after creation. They are often used
to represent textual data, whetherit's a single word, a sentence, or an
entire document. Here's how you can work with strings:

Creating a String:

To create a string, you can enclose a sequence of characters within
single (') ordouble (") quotation marks.

name = "ram"

message = 'Hello, World!'

You can also create multi-line strings using triple-quotes ("' or """),
which are useful for docstrings and multi-line text.

multi_line=""

Thisis a multi-line

string in Python.

28 | Python: Building Skills for Software Development

Chapter 3 Data Structure in Python

Accessing String Characters:

You can access individual characters in a string using indexing.
Python uses 0-based indexing, meaning the first character is atindex
0, the second characteratindex 1,and soon.

name ="mohan"

first_char=name[0] #'m'
second_char=name[1] #'0'

You can also use negative indexing to access characters from the
end of the string.

last_char=name[-1] #'n'
second_last_char=namel[-2] #'a'
String Slicing:

You can extract substrings from a string using slicing. Slicing allows
you to specify a range of indices to create a new string that includes
the characters within that range.

text="Hello, World!"

substring =text[7:12] # 'World'

You can omit the start or end index to slice from the beginning or to
the end of the string, respectively.

String Concatenation:

You can concatenate strings using the + operator.

greeting ="Hello"

name ="anand"

message = greeting+", " + name # 'Hello, anand'
String Methods:

Python provides many built-in methods for manipulating and working
with strings. Some common string methods include upper(), lower(),
strip(), replace(), and split(). These methods allow you to perform
operations like converting a string to uppercase, removing leading
and trailing whitespace, replacing substrings, and splitting a string
into a list of substrings based on a delimiter.

text="Hello, Meena!"

text_upper =text.upper() #'HELLO,MEENA!'
text_stripped =text.strip() #'Hello, Meena!'
text_replaced =text.replace("Meena", "Mahi") #'Hello,Mahi!"
words = text.split(",") #['Hello',' Meena! ']

Python: Building Skills for Software Development | 29

Chapter 3 Data Structure in Python

String Formatting:

You can format strings using different methods, including f-strings,
string interpolation with %, and the format() method. F-strings are a
common and modern way to format strings in Python.

name = "Palak"

age=11

formatted_string ="My name is {name} and | am {age} years old."
String Escapes:

Special characters in strings can be represented using escape
sequences. For example, "\n" represents a newline character, and
“\t" represents a tab character.

escaped_string = "This is a line with a newline\nand a
tab\tcharacter."

Python provides a wide range of string methods and powerful string
manipulation capabilities, making it easy to work with textual data in
your programs. Strings are essential for tasks like text processing,
data input and output, and building user interfaces.

30 Python: Building Skills for Software Development

Chapter 4
Object-Oriented
Programming (OOP)

Python: Building Skills for Software Development

31

Chapter 4 Object-Oriented Programming (OOP)

Classes and Objects

In object-oriented programming (OOP), classes and objects are
fundamental concepts. They allow you to model and organize your
code in a way that mimics the real world, making it more modular and
maintainable. Here's an overview of classes and objects in Python:
1.Classes:
A class is a blueprint or template for creating objects. It defines the
structure and behavior of objects of that type. Classes in Python are
created using the class keyword. A class can include attributes (data
members) and methods (functions). Here's how you define a simple
classin Python:
class Dog:
def __init__(self, name, breed):

self.name = name
self.breed =breed

def bark(self):

return "Woof!"
def describe(self):
return f'{self.name} is a {self.breed} dog."

e The __init__methodis the constructor, which is called when an
objectis created. Itinitializes the attributes of the object.
* The bark and describe methods are functions associated with
the class. They can be called on objects of the class.

2.0Objects:

An object is an instance of a class. It represents a concrete, specific
entity based on the class's blueprint. You create objects by calling the
class as if it were a function. Here's how you create and work with
objects of the Dog class:

dog1=Dog("Chitti", "Pit Bull")

dog2 =Dog("Max", "German Shepherd")

print(dog1.name) # "Chitti"

print(dog2.describe()) # "Max is a German Shepherd dog."
print(dog2.bark()) # "Woof!"

In the code above, dog1 and dog2 are objects created from the Dog
class. You can access their attributes and call their methods as
above.

32 | Python: Building Skills for Software Development

Chapter 4 Object-Oriented Programming (OOP)

Inheritance and Polymorphism

Inheritance and polymorphism are two key concepts in object-
oriented programming (OOP) that enable code reusability,
extensibility, and flexibility. They allow you to create hierarchies of
classes and use objects of derived classes in a way that's compatible
with their base classes. Let's delve deeper into these concepts in
Python:

1.Inheritance:

Inheritance is the mechanism by which one class can inherit
properties (attributes and methods) from another class. The class
from which properties are inherited is known as the base class or
parent class, and the class that inherits those properties is known as
the derived class or child class.

In Python, you can create a derived class by defining a new class that
inherits from a base class using the following syntax:

class BaseClass:
Base class attributes and methods
class DerivedClass(BaseClass):
Additional attributes and methods specific to the derived class
Here's an example:
class Animal:

def __init__(self, species):
self.species = species
class Bird(Animal):

deffly(self):

return f"A {self.species} is flying."

In this example, the Bird class inherits the species attribute from the
Animal class and adds its own fly method.

2.Polymorphism:

Polymorphism is a fundamental OOP concept that allows objects of
different classes to be treated as objects of a common base class.
This enables you to write more flexible and generic code.
Polymorphism is achieved through method overriding and interfaces.

Python: Building Skills for Software Development | 33

Chapter 4 Object-Oriented Programming (OOP)

* Method Overriding:
Method overriding allows a derived class to provide a specific
implementation for a method that is already defined in the base class.
When a method is called on an object, the appropriate version of the
method is executed based on the object's actual class. This is also
known as dynamic method dispatch.
class Animal:
def speak(self):
return "Some generic animal sound."
class Dog(Animal):
def speak(self):
return "Woof!"
class Cat(Animal):
def speak(self):
return "Meow!"
Polymorphismin action
animals =[Dog(), Cat()]
foranimalin animals:
print(animal.speak())
In the example above, we have a list of Animal objects that can
include both Dog and Cat objects. When the speak method is called
on each object, the appropriate overridden version of the method is
executed.

* Interfaces and Abstract Classes:
In Python, you can create interfaces and abstract classes using the
"abc" module. These classes define method signatures that must be
implemented by any concrete (non-abstract) class that inherits from
them. This enforces a certain structure and behavior for classes that
implementthe interface.
Here's a basic example:
from abc import ABC, abstractmethod
class Shape(ABC):
@abstractmethod
def area(self):
pass
class Circle(Shape):
def __init__(self, radius):
self.radius = radius
def area(self):
return 3.14 * self.radius * self.radius

34 | Python: Building Skills for Software Development

Chapter 4 Object-Oriented Programming (OOP)

In this example, the Shape class defines an abstract method area,
which must be implemented by any concrete class that inherits from
it.

In summary, inheritance and polymorphism are essential OOP
concepts that help you create reusable and extensible code.
Inheritance allows you to create hierarchies of classes with shared
attributes and methods, while polymorphism allows you to treat
objects of different classes in a uniform way, making your code more
flexible and easier to maintain.

Encapsulation and Abstraction

Encapsulation and abstraction are two important principles in object-
oriented programming (OOP) that help manage complexity, enhance
code organization, and improve maintainability. They allow you to
hide the internal details of a class while exposing a well-defined and
easy-to-use interface. Let's explore these concepts in more detail:
1.Encapsulation:
Encapsulation is the concept of restricting access to certain
components of an object or a class while exposing a well-defined
interface. It helps in preventing unintended interference and ensures
that data and behavior are encapsulated within a class. In Python,
encapsulation can be achieved using access modifiers and property
methods.
* Access Modifiers:
In Python, there are three access modifiers to control the visibility of
attributes and methods:
Public (default): Members are accessible from anywhere.
Protected (underscore prefix _): Members are not intended for
public use but can be accessed from outside the class.
Private (double underscore prefix __): Members are not
accessible from outside the class.
Here's an example of encapsulation using access modifiers:
class Student:

def __init__(self, name, age):

self.name = name # Public attribute

self._age=age # Protected attribute
self.__grade="A' # Private attribute
def display(self):

print(f"Name: {self.name}, Age: {self._age}, Grade: de}")

Python: Building Skills for Software Development | 35

Chapter 4 Object-Oriented Programming (OOP)

student = Student("ram", 25)

print(student.name) # Accessing the public attribute
print(student._age) # Accessing the protected attribute (not
recommended)

print(student.__grade) # Accessing the private attribute will raise
an AttributeError

0 Property Methods:
Property methods (getter and setter methods) allow you to control the
access to an attribute and perform custom actions when getting or
setting its value. This can be used to maintain data integrity and hide
the implementation details.
class Circle:

def__init__(self, radius):
self._radius =radius

@property

defradius(self):

return self._radius
@radius.setter
def radius(self, value):
if value < 0:
raise ValueError("Radius cannot be negative.")

self._radius =value
circle =Circle(5)
print(circle.radius) # Accessing the property
circle.radius=10 # Setting the property (value checked by
the setter)

2. Abstraction:

Abstraction is the process of simplifying complex systems by
breaking them into smaller, more manageable parts while hiding
unnecessary details. It focuses on defining a clear and concise
interface to interact with an object, without exposing the internal
implementation.

In Python, you can achieve abstraction by defining abstract classes
and methods using the "abc"(Abstract Base Classes) module.
Abstract classes cannot be instantiated, and they define abstract
methods that must be implemented by concrete (non-abstract)
subclasses.

36 | Python: Building Skills for Software Development

Chapter 4 Object-Oriented Programming (OOP)

Here's an example:
from abc import ABC, abstractmethod
class Shape(ABC):
@abstractmethod
def area(self):
pass
class Circle(Shape):
def __init__(self, radius):
self.radius = radius
def area(self):
return 3.14 * self.radius * self.radius
circle =Circle(5)
print(circle.area()) # Concrete implementation of the abstract
method
In this example, the Shape class is an abstract class with an abstract
method area. The Circle class is a concrete subclass that provides an
implementation of the area method.
Abstraction allows you to define a clear and consistent interface for
your classes, promoting code reuse and making your code more
understandable and maintainable.
Both encapsulation and abstraction are crucial in OOP to create
clean, modular, and maintainable code. Encapsulation helps protect
the internal state of objects, while abstraction provides a well-defined
and simplified interface to interact with those objects.

Exception Handling

Exception handling is a crucial aspect of programming that allows
you to gracefully manage and recover from unexpected or
exceptional situations that may occur during the execution of your
code. In Python, exceptions are raised when an error or unusual
event occurs, and you can use exception handling to handle these
events. Here's an overview of how exception handling works in
Python:

1.Basic Exception Handling:

In Python, exceptions are raised when something goes wrong during
program execution. You can use the try, except, and optionally finally
blocks to handle exceptions. Here's a basic example:

Python: Building Skills for Software Development | 37

Chapter 4 Object-Oriented Programming (OOP)

try:
Code that might raise an exception
x=10/0 # this will raise a ZeroDivisionError
except ZeroDivisionError:
Code to handle the exception
print("Division by zero is not allowed.")
In this example, the code inside the try block raises a
ZeroDivisionError, and except block handles it by printing an error
message.

2.Handling Multiple Exceptions:
You can handle multiple exceptions by including multiple except
blocks. This allows you to handle different types of exceptions
differently.
try:
num =int(input("Enter a number: "))
result=10/num
except ValueError:
print("Invalid input. Please enter a valid number.")
except ZeroDivisionError:
print("Division by zero is not allowed.")

3. The else Block:
You can use an else block after all except blocks to specify code that
should be executed when no exceptions are raised.
try:
num =int(input("Enter a number: "))
result=10/num
except ValueError:
print("Invalid input. Please enter a valid number.")
except ZeroDivisionError:
print("Division by zero is not allowed.")
else:
print("Resultis:", result)

4. The finally Block:
The finally block is used to define code that will be executed
regardless of whether an exception is raised or not. This block is
commonly used for cleanup operations, such as closing files or
releasing resources.

38 | Python: Building Skills for Software Development

Chapter 4 Object-Oriented Programming (OOP)

try:

file = open("example.txt", "r")

Perform file operations
except FileNotFoundError:

print("File not found.")
finally:
file.close() # Always close the file, whether an exception raised or
not
5.Custom Exceptions:
You can create your own custom exceptions by defining new classes
that inherit from the base Exception class. This allows you to raise
and catch specific exceptions tailored to your application's needs.
class CustomError(Exception):

def __init__(self, message):

super().__init__(message)

try:

if some_condition:

raise CustomError("This is a custom exception.")

except CustomErrorase:

print(e)

6. Handling Exceptions in a Function:
You can also handle exceptions within a function and propagate the
exception to the caller or perform specific error handling within the
function.
defdivide(x, y):
try:
result=x/y
except ZeroDivisionError:
return "Division by zerois not allowed."
return result
result=divide(10, 0)
print(result)
Exception handling is a critical aspect of writing robust and reliable
code. It allows you to gracefully handle errors and unexpected
situations, making your code more resilient and user-friendly. When
designing your code, consider the types of exceptions that may occur
and plan your exception handling strategy accordingly.

Python: Building Skills for Software Development | 39

Chapter 5
File Handling

40

Python: Building Skills for Software Development

Chapter 5 File Handling

Reading and Writing Files

Reading and writing files is a common task in Python, and it allows
you to interact with external data sources, like text files, CSV files,
JSON files, and more. Here, I'll provide an overview of how to read
and write text files in Python.

1.Reading Files:
You can read the contents of a text file in Python using the open()
function in combination with different modes, such as 'r' mode for
reading. Here's a basic example:
Opening afile in read mode
with open(‘example.txt', 'r') asfile:

content =file.read()
Printing the contents of the file
print(content)
In the code above, with statement is used to open the file and
automatically close it when the block is exited. The file's contents are
then read into the content variable.

2.Writing Files:

To write data to a file, you can use the 'w'mode with the open()
function. If the file doesn't exist, it will be created. If it does exist, the
content will be overwritten. Here's a simple example:

Opening afile in write mode

with open(‘output.txt', 'w') as file:

file.write("Hello, world\n")

file.write("This is a new line of text.")

In this example, we open 'output.txt' in write mode and write some
text to it. If the file already exists, its previous content will be
overwritten.

3. Appending to Files:

You can append data to an existing file using the 'a' (append) mode.
This will add new content to the end of the file without overwriting the
existing content.

Opening afilein append mode

with open(‘output.ixt', 'a') asfile:

file.write("\nThis is an appended line.")

Python: Building Skills for Software Development 41

Chapter 5 File Handling

4.Reading Line by Line:
If you need to process a file line by line, you can use for loop:

with open(‘example.txt', 'r') asfile:
forlineinfile:
print(line)

This code reads the file line by line, making it useful for processing
large files without loading the entire content into memory.

5.Handling Exceptions:

When working with files, it's important to handle exceptions, such as
FileNotFoundError or PermissionError. You can use a try and
except block to handle these exceptions gracefully.

try:
with open('nonexistent_file.txt', 'r') as file:
content =file.read()
except FileNotFoundError:
print("The file does not exist.")
This code attempts to open a file that doesn't exist, and the exception
is caught and handled.

6.Closing Files Explicit

While using the with statement is recommended because it
automatically closes the file, you can also close a file explicitly using
the close() method:

file = open('example.txt','r')

content =file.read()

file.close() # Close the file explicitly

It's important to close files when you're done with them to free up
system resources.

These are the basics of reading and writing text files in Python. You
can also work with other types of files, such as CSV files, JSON files,
and more, using appropriate libraries and methods tailored to those
file formats

42 | Python: Building Skills for Software Development

Chapter 5 File Handling

Working with CSV and JSON

Working with CSV (Comma-Separated Values) and JSON
(JavaScript Object Notation) are common tasks in data processing
and exchange. Python provides built-in modules to simplify reading
and writing data in these formats. Let's explore how to work with CSV
and JSON in Python:

Working with CSV:
1.Reading CSV Files:

To read data from a CSV file, you can use the csv module. Here's an
example of reading a CSV file and printing its contents:

importcsv
with open('data.csv', 'r') asfile:
csv_reader = csv.reader(file)
forrowincsv_reader:
print(row)
You can also specify a delimiter other than a comma by passing the
delimiter parameter to the csv.reader() function.

2.Writing to CSV Files:

To write datato a CSV file, you can use the csv.writer class. Here's an
example of writing datato a CSV file:

import csv

data=[
['Name", "Age"],
["ram", 25],
['mohan”, 30]

]

with open(‘output.csv', 'w', newline=") asfile:
csv_writer = csv.writer(file)
csv_writer.writerows(data)

3.Using Dictionaries for CSV:

You can also read and write CSV files using dictionaries, which is a
common format for tabular data. This is achieved using
csv.DictReader and csv.DictWriter:

Python: Building Skills for Software Development | 43

Chapter 5 File Handling

importcsv

with open('data.csVv', 'r') asfile:
csv_reader =csv.DictReader(file)
forrowincsv_reader:

print(row)

data=[

{"Name": "palak", "Age": 12},

{"Name": "lakshay", "Age": 14}

]

with open(‘output.csv', 'w', newline=") as file:
fieldnames = data[0].keys()
csv_writer = csv.DictWriter(file, fieldnames=fieldnames)
csv_writer.writeheader()
csv_writer.writerows(data)

Working with JSON:

1.Reading JSON Files:
Toread data from a JSON file, you can use the json module:
importjson
with open('data.json’, 'r') asfile:
data =json.load(file)
print(data)

2.Writing to JSON Files:

To write data to a JSON file, you can use the json.dump() method:

importjson

data ={
"name": "ram",
"age": 25

}

with open(‘output.json’, 'w') asfile:
json.dump(data, file)

If you want to make the JSON file more human-readable, you can
specify the indent parameter:

json.dump(data, file, indent=4)

44 | Python: Building Skills for Software Development

Chapter 5 File Handling

3.Using JSON with Python Dictionaries:
In Python, dictionaries are similar in structure to JSON objects. You
can easily convert between JSON and Python dictionaries using the
jsonmodule:
importjson
data={

"name": "anand",

"age": 25
}
Convert Python dictionary to JSON
json_data =json.dumps(data)
Convert JSON to Python dictionary
python_data = json.loads(json_data)
Working with CSV and JSON data is important for data manipulation,
file parsing, and data exchange. These formats are widely used for
various data storage and interchange purposes, and Python
provides convenient libraries to handle them efficiently.

Error Handling in File Operations

Error handling is crucial when working with file operations in Python.
You need to anticipate and handle potential errors to ensure the
robustness and reliability of your code. Here are some common
errors you may encounter when performing file operations and how
to handle them:

1.FileNotFoundError:
This error occurs when you attempt to open or manipulate a file that
does not exist. You can handle it as follows:
try:

with open('nonexistent_file.txt', 'r') asfile:

content =file.read()

except FileNotFoundError:

print("The file does not exist.")

2.PermissionError:
This error occurs when you do not have the required permissions to
access or modify afile. You can handle it like this:
try:
with open('/root/protected_file.txt', 'w') asfile:
file.write("This is a protected file.")

Python: Building Skills for Software Development 45

Chapter 5 File Handling

except PermissionError:
print("Permission denied. You do not have access to thisfile.")

3.10Error (Input/Output Error):
This is a more general error that can occur for various reasons, such
as attempting to open a directory as a file or trying to read a write-only
file. You can handle it as follows:
try:

with open(‘/dev/sda’, 'r') asfile:

content =file.read()

except|OErrorase:

print(f"An IO error occurred: {e}")

4.Handling Multiple Errors:
You can handle multiple errors by including multiple except blocks,
each specifically targeting a different error type. Here's an example:
try:

with open('file.txt', 'r') asfile:

content =file.read()

except FileNotFoundError:

print("The file does not exist.")
except PermissionError:

print("Permission denied.")
except IOErroras e:

print(f"An 10 error occurred: {e}")

5.Usingfinally Block:
You can use the finally block to execute cleanup operations
regardless of whether an exception is raised or not. This is often used
for closing files and releasing resources:
try:

with open('file.txt', 'r') asfile:

content =file.read()

except FileNotFoundError:

print("The file does not exist.")
finally:
file.close() # Close thefile,evenif an error occurred

46 | Python: Building Skills for Software Development

Chapter 5 File Handling

6. Using else Block:
The else block can be used to specify code that should be executed
when no exceptions are raised. For example:
try:

with open('file.txt', 'r') as file:

content =file.read()

except FileNotFoundError:

print("The file does not exist.")
else:

print("File reading was successful.")

Handling errors in file operations is essential for making your code
robust and user-friendly. It allows your program to respond gracefully
to unexpected situations, ensuring that your code remains reliable
and error-tolerant.

Python: Building Skills for Software Development 47

Chapter 6
Advanced
Python Topics

48

Python: Building Skills for Software Development

Chapter 6 Advance Python Topics

Decorators and Generators

Decorators:
Decorators are a powerful and flexible feature in Python that allow
you to modify or enhance the behavior of functions or methods
without changing their code. Decorators are often used for tasks like
logging, authentication, authorization, and code profiling.
Here's a simple example of a decorator:
def my_decorator(func):
defwrapper():
print("Something is happening before the function is called.")
def func()
print("Something is happening after the function is called.")
return wrapper

@my_decorator
defsay_hello():

print("Hello!")
say_hello()
In this example, my_decorator is a decorator function that takes
another function (func) as its argument and returns a new function
(wrapper) that wraps the original function. When you use the @
symbol with the decorator name before a function definition, it
indicates that the function should be decorated. In this case,
say_hello is wrapped by my_decorator, which adds some behavior
before and after the original function.
Generators:
Generators are a way to create iterators in Python. Unlike traditional
functions that use return, generators use yield to produce a sequence
of values lazily, one at a time. This is especially useful for working
with large data sets, as it doesn't require storing the entire data in
memory.
Here's a simple example of a generator:
def count_up_to(n):
i=1

while i<= n:

yield i

i+=1
for num in count_up_to(5):

print(num)

Python: Building Skills for Software Development 49

Chapter 6 Advance Python Topics

In this example, count_up_to is a generator function that yields
numbers from 1 to n. When you iterate over it using a for loop, the
numbers are produced one atatime.

Generators can also be used to create infinite sequences or to
efficiently process large data sets without consuming excessive
memory.

Decorators and generators are powerful and versatile features in
Python that can significantly enhance the readability, reusability,
and performance of your code. Decorators are commonly used for
cross-cutting concerns like logging and authentication, while
generators are ideal for lazy evaluation and dealing with large data
sets.

Context Managers

Context managers in Python are a convenient way to manage
resources, such as files, network connections, or database
connections, ensuring that they are properly acquired and released,
even if exceptions occur during their use. Context managers are
typically used with the with statement, which simplifies the setup
and teardown of resources. Python's standard library provides the
contextlib module to create custom context managers, and it also
includes some built-in context managers.

Here's how to use context managers with the with statement:

1. Using Built-In Context Managers:

Python provides built-in context managers for common tasks, like
opening and closing files or dealing with network connections. For
example, when working with files, you can use the open() function as
acontext manager:

with open(‘example.txt', 'r') as file:

content =file.read()
File is automatically closed when exiting the block
Fileis already closed here

In this example, the with statement ensures that the file is properly
closed when the block is exited, even if an exception occurs.

50 | Python: Building Skills for Software Development

Chapter 6 Advance Python Topics

2.Creating Custom Context Managers:
You can create your own context managers by defining classes with
(__enter__) and(__exit_) methods. The __enter__ method is
responsible for resource setup, and the __exit__ method is
responsible for resource cleanup. Here's an example:
class MyContextManager:
def__enter__(self):
print("Entering the context")
Resource setup (e.g.,open afile)
return self
Optionally return an object to be used within the context
def __exit__(self, exc_type, exc_value, traceback):
print("Exiting the context")
Resource cleanup (e.g.,close afile)
with MyContextManager() as cm:
print("Inside the context")
Exiting the context
In this example, when the with block is entered, the __enter__
method is called, and when the block is exited, the __exit method
is called, ensuring proper resource management.

3. Using contextlib for Simpler Context Managers:
The contextlib module in Python's standard library provides tools to
create context managers more easily, especially for simpler cases.
You can use the contextlib.contextmanager decorator to define a
generator-based context manager. Here's an example:
from contextlib import contextmanager
@contextmanager
def my_context_manager():

print("Entering the context")
Resource setup

yield #The control is yielded to the with block

print("Exiting the context")
Resource cleanup
with my_context_manager():

print("Inside the context")
Exiting the context
In this example, the yield statement serves as the point where the
controlis temporarily transferred to the with block. When the block is
exited, execution continues after the yield statement.

Python: Building Skills for Software Development | 51

Chapter 6 Advance Python Topics

Context managers help ensure resource management, clean
code,anderror handling. They are widely used in Python to handle
tasks like file 1/0O, database connections, and network operations.
When you use context managers, you can be confident that
resources will be acquired and released correctly, making your code
more robust and maintainable.

Multithreading and Multiprocessing

Multithreading and multiprocessing are techniques in Python for
concurrent execution of code, which can help improve the
performance of your applications, particularly when dealing with
CPU-bound or I/0O-bound tasks. These techniques enable you to
execute multiple tasks in parallel, taking advantage of multi-core
processors. Here's an overview of both concepts:

Multithreading:

Multithreading involves using multiple threads within a single process
to perform tasks concurrently. Python's threading module is used for
this purpose. However, due to Python's Global Interpreter Lock
(GIL), multithreading is generally not suitable for CPU-bound tasks
(tasks that require significant processing power) in Python. It's more
effective for I/0-bound tasks where threads spend time waiting for I/O
operations to complete.

Here's a simple example using the threading module:
import threading
def print_numbers():
foriinrange(1, 6):
print(f"Number: {i}")

def print_letters():
forletterin ‘abcde":
print(f"Letter: {letter}")
Create two threads
t1 = threading.Thread(target=print_numbers)
t2 = threading.Thread(target=print_letters)

52 | Python: Building Skills for Software Development

Chapter 6 Advance Python Topics

Start the threads

t1.start()

t2.start()

#Wait for both threads to finish
t1.join()

t2.join()

print("Both threads are done.")

In this example, two threads are created to print numbers and letters
concurrently.

Multiprocessing:

Multiprocessing involves using multiple processes, each with its own
Python interpreter and memory space, to execute tasks in parallel.
Python's multiprocessing module is used for this purpose. Unlike
multithreading, multiprocessing can fully utilize multiple CPU cores
and is suitable for CPU-bound tasks.

Here's a simple example using the multiprocessing module:
import multiprocessing
def square(number, result, index):
resultlindex] = number * number
if_name__=='_main__"
numbers=[1,2, 3,4, 5]
results = multiprocessing.Array('i', len(numbers))
processes =]
fori, numberin enumerate(numbers):
process = multiprocessing.Process(target=square,
args=(number, results, i))
processes.append(process)
process.start()
for process in processes:
process.join()
print(list(results))

In this example, we use multiple processes to calculate the squares
of numbers in parallel and store the results in an array.

Python: Building Skills for Software Development | 53

Chapter 6 Advance Python Topics

Key Differences:

* Multithreading uses multiple threads within a single process,
while multiprocessing uses multiple separate processes.

* Multithreading is subject to Python's Global Interpreter Lock
(GIL), which can limit its effectiveness for CPU-bound tasks.
Multi-processing bypasses the GIL and can utilize multiple CPU
cores.

* Multiprocessing requires inter-process communication
mechanisms for sharing data between processes, such as
multiprocessing.Queue and multiprocessing.Array.

When choosing between multithreading and multiprocessing,
consider the nature of your task. If you have CPU-bound tasks that
can benefit from parallel processing, consider using multiprocessing.
For 1/0-bound tasks, multithreading may be more appropriate. Keep
in mind that Python's GIL limits the effectiveness of multithreading for
certain scenarios, so multiprocessing is often the preferred choice for
CPU-bound tasks.

Regular Expressions

Regular expressions, often abbreviated as regex or regexp, are a
powerful tool for pattern matching and text manipulation. They
provide a concise and flexible way to search, match, and manipulate
text strings based on patterns. In Python, the re module is used to
work with regular expressions.

Here are some key concepts and examples of using regular
expressions in Python:

1. Basic Patterns:

. (dot): Matches any single character except a newline.

Az Anchors the regex at the start of the string.

$: Anchors the regex at the end of the string.

*: Matches 0 or more occurrences of the preceding character.
+: Matches 1 or more occurrences of the preceding character.
?: Matches 0 or 1 occurrence of the preceding character.

[1: Matches any single character within the brackets.

I: Acts like an OR operator.

54 | Python: Building Skills for Software Development

Chapter 6 Advance Python Topics

2.Using the re Module:
importre
pattern = r'\JA-Za-z]+$'
text="HelloWorld'
Check if the entire string consists of letters only
if re.match(pattern, text):
print(f"{text} matches the pattern.")
else:
print(f"{text} does not match the pattern.")

3. Matching and Searching:

importre

pattern = r'\b\d{4}-\d{4}-\d{4}\b' # Matches a aadhar number
pattern

text="'ram: 1234-4578-3123, mohan: 9873-6534-4323'

matches =re.findall(pattern, text)

print(matches)

4.Groups and Capture:
importre
pattern = r'(\w+): (\d+)-(\d+)-(\d+)' # Matches name and aadhar
number pattern
text="ram: 1233-1245-6789, mohan: 9887-6765-4321'
matches =re.findall(pattern, text)
for match in matches:
name, part1, part2, part3 = match
print(f"{name}'s aadhar: {part1}-{part2}-{part3}")

5. Substitution:

importre

pattern =r\b(\w)(\w*)\b' # Matches individual words

text ='regular expressions are powerful'

Capitalize the first letter of each word

result =re.sub(pattern, lambda match: match.group(1).upper() +
match.group(2), text)

print(result)

Python: Building Skills for Software Development 55

Chapter 6 Advance Python Topics

These are just a few examples of what you can do with regular
expressions in Python. Regular expressions are a vast and powerful
topic, and they can be used for tasks such as validation,
searchandreplace, text extraction, and more. If you're new to
regular expressions, it may take some time to become familiar with
the syntax and techniques, but they are a valuable tool for working
with text data.

Working with Dates and Times

Working with dates and times in Python is facilitated by the datetime
module, which provides classes for working with dates, times, and
timedeltas. Here's an overview of how to work with dates and times
in Python:

1.Current Date andTime:

You can obtain the current date and time using the datetime class:
from datetime import datetime

current_datetime = datetime.now()

print("Current Date and Time:", current_datetime)

2.Formatting Dates andTimes:

You can format dates and times as strings using the strftime
method, which stands for "string format time":

from datetime import datetime

current_datetime = datetime.now()

Format as string

formatted_date = current_datetime.strftime("%Y-%m-%d
%H:%M:%S")

print("Formatted Date:", formatted_date)

The format codes used in the strftime method are placeholders for
various components like year, month, day, hour, minute, and second.

3. Parsing Strings to Dates:

You can parse strings to obtain datetime objects using the strptime
method:

from datetime import datetime

date_string="2023-11-09 12:30:00"

56 | Python: Building Skills for Software Development

Chapter 6 Advance Python Topics

parsed_date = datetime.strptime(date_string, "%Y-%m-%d
%H:%M:%S")

print("Parsed Date:", parsed_date)

Make sure to provide the correct format code corresponding to the
structure of your date string.

4.Time Delta:

A timedelta represents the difference between two dates or times:
from datetime import datetime, timedelta

current_datetime = datetime.now()

future_datetime = current_datetime + timedelta(days=7)
print("Current Date and Time:", current_datetime)

print("Future Date and Time:", future_datetime)

In this example, a timedelta of 7 days is added to the current date
and time.

5. Working with Time Zones:

For working with time zones, you can use the pytz library:
from datetime import datetime

import pytz

Set the time zone

tz = pytz.timezone('America/New_York')

current_datetime = datetime.now(tz)

print("Current Date and Time in New York:", current_datetime)

6. Arithmetic with Dates:

You can perform arithmetic operations with dates, such as finding
the difference between two dates:

from datetime import datetime

date1 = datetime (2023, 11, 9)

date2 = datetime (2023, 11, 1)

difference = date1 - date2

print("Difference in Days:", difference.days)

This calculates the difference in days between date1 and date2.

Python: Building Skills for Software Development | 57

Chapter 6 Advance Python Topics

Working with dates and times can involve complex scenarios, such
as handling daylight saving time, leap years, and different calendar
systems. The datetime module in Python provides a solid foundation
for these tasks, and additional libraries like pytz can enhance your
capabilities, especially when dealing with time zones.

Virtual Environment

Virtual environments in Python are a way to create isolated
environments for your projects, allowing you to manage
dependencies and avoid conflicts between different projects. The
venv module is the built-in tool for creating virtual environments in
Python 3.3 and newer versions.

Here's a basic guide on working with virtual environments:

1.Creating aVirtual Environment:

To create a virtual environment, open a terminal or command prompt
and navigate to your project's directory. Then, run the following
command:

python -m venv venv

This command creates a virtual environment named "venv" in your
project directory.

2. Activating the Virtual Environment:

After creating the virtual environment, you need to activate it. On
Windows, use:

venv\Scripts\activate
On macOS and Linux, use:
source venv/bin/activate

When the virtual environment is activated, your command prompt or
terminal prompt will change, indicating that you are now working
within the virtual environment.

3.Installing Dependencies:

With the virtual environment activated, you can install dependencies
specific to your project. For example:

pip install package_name

58 | Python: Building Skills for Software Development

Chapter 6 Advance Python Topics

This installs the package only in the virtual environment, keeping
your global Python environment clean.

4. Deactivating the Virtual Environment:

When you're done working in the virtual environment, you can
deactivate it using the following command:

deactivate

5.Using requirements.txt:

You can create a requirements.txt file to specify the dependencies
for your project. It helps in sharing and replicating your environment.
To generate a requirements.txtfile, use:

pip freeze > requirements.txt
To install dependencies from a requirements.ixt file, use:
pip install -r requirements.txt

6.Virtual Environment Best Practices:

e Always use virtual environments for your projects to avoid
conflicts between dependencies.

* Include the venv directory in your project's .gitignore or equivalent
file to avoid versioning the virtual environment.

* Share your requirements.txt file with your project so others can
easily recreate the environment.

Using virtual environments is a best practice in Python development,
especially when working on multiple projects or collaborating with
others. It ensures that each project has its own isolated environment,
preventing dependency clashes and making it easier to manage
project-specific requirements.

Python: Building Skills for Software Development 59

Chapter 7

Python Standard Library

Chapter 7
Python
Standard Library

60

Python: Building Skills for Software Development

Chapter 7 Python Standard Library

The Python Standard Library is a collection of modules and packages
that come with the Python programming language. These modules
provide a wide range of functionality, from working with data types
and structures to handling networking, file /O, and much more. Here
are some key categories and examples of modules from the Python
Standard Library:

1. Data Types and Structures:

* collections: Provides alternatives to built-in types like lists and
dictionaries, such as "Counter’, "defaultdict’, and
"namedtuple’.

* json: Enables encoding and decoding JSON data.

* math: Offers mathematical functions and constants.

* random: Generates random numbers and performs random
selections.

2. File and Directory Access:

* os: Provides a way to interact with the operating system,
including file and directory operations.

* shutil: Offers higher-level file operations, such as copying and
archiving.

* glob: Helps find files using wildcard patterns.

3. Networking:

e socket: Implements low-level network communication.

* http.server and socketserver: Facilitate building simple HTTP
servers.

e urllib: Allows working with URLs.

4. Threading and Multiprocessing:

threading and multiprocessing: Support concurrent

programming using threads and processes.

e queue: Provides thread-safe FIFO queues for communication
between threads.

5. Time and Date:

datetime: Offers classes for working with dates and times.

* time: provides functions for working with time, such as measuring
executiontime.

Python: Building Skills for Software Development | 61

Chapter 7 Python Standard Library

6. Regular Expressions:
re: Implements regular expression operations.

7. Testing:
unittest: The built-in testing framework for writing and running
tests.

8. Web and Internet Data:
urllib.request: Fetches data from URLs.
e http.client: Implementsan HTTP client.

9. Compression and Archiving:

zipfile: Provides tools to create, read, write, append, and lista ZIP
file.

» tarfile: Allows working with tar archive files.

10.Cryptography:

e hashlib: Implements hash functions.

e ssl: Supports TLS/SSL protocols for secure network
communication.

11.Data Serialization:
» pickle: Serializes and deserializes Python objects.
e json:Encodes and decodes JSON data.

12. Command-Line Argument Parsing:
* argparse: Helps parse command-line arguments.

13. Miscellaneous:

» platform: Provides an interface to interact with the underlying
platform's identifying data.

* logging: Implements a flexible logging system.

These are just a few examples of the modules available in the
Python Standard Library. The standard library is extensive,
covering a broad range of topics and providing tools for various
programming tasks. When working on a project, it's beneficial to
explore the standard library to leverage existing functionality and
reduce the need for external dependencies.

62 | Python: Building Skills for Software Development

Chapter 7 Python Standard Library

Commonly Used Modules (e.g., os, sys, math, random)

The Python Standard Library is a collection of modules and packages
that come with the Python programming language. These modules
provide a wide range of functionality, from working with data types
and structures to handling networking, file /O, and much more. Here
are some key categories and examples of modules from the Python
Standard Library:

1.0s (Operating System Interface):

Purpose:Provides a way to interact with the operating system,
allowing you to perform tasks like file and directory operations.
Common Functions:

os.getcwd(): Get the current working directory.

os.listdir(): List files and directories in a given path.
os.path.join(): Join one or more path components intelligently.
import os

Get the current working directory
current_dir=o0s.getcwd()

print("Current Directory:", current_dir)

Listfiles and directories in the current directory

file_list = os.listdir(current_dir)

print("Files and Directories:", file_list)

2.sys (System-Specific Parameters and Functions):

Purpose: Provides access to some variables used or maintained by
the interpreter and functions that interact strongly with the interpreter.

Common Functions:

sys.argv: List of command-line arguments.

sys.exit(): Terminate the program.

sys.path: List of directories where Python looks for modules.
import sys

Print command-line arguments

print("Command-line arguments:", sys.argv)

Exit the program with a message

sys.exit("Exiting the program.")

Python: Building Skills for Software Development 63

Chapter 7 Python Standard Library

3. math (Mathematical Functions):

Purpose: Provides mathematical functions and constants.
Common Functions:

math.sqrt(x): Return the square root of x.

math.sin(x), math.cos(x), math.tan(x): Trigonometric functions.
math.pi: A mathematical constant representing Pi.

import math

Calculate the square root

square_root =math.sqrt(25)

print("Square Root:", square_root)

Calculate the sine of an angle

angle_sin = math.sin(math.radians(30))

print("Sine of 30 degrees:", angle_sin)

4.random (Random Number Generators):

Purpose: Provides functions for generating pseudo-random
numbers.

Common Functions:

random.random(): Return the next random floating-point number in
therange[0.0, 1.0).

random.randint(a, b): Return a random integer N such that a <= N
<=bh.

random.choice(seq): Return arandom element from the non-empty
sequence.

import random

Generate arandom number between 0 and 1

random_number =random.random()

print("Random Number:", random_number)

Generate arandom integer between 1 and 10 (inclusive)
random_integer =random.randint(1, 10)

print("Random Integer:", random_integer)

Choose arandom element from a list

fruits =['apple’, 'orange’, 'banana’, 'grape']

random_fruit =random.choice(fruits)

print("Random Fruit:", random_fruit)

64 | Python: Building Skills for Software Development

Chapter 7 Python Standard Library

5.datetime (Date and Time):

Purpose: Supplies classes for working with dates and times.
Common Classes:

datetime.datetime: Represents a date and time.
datetime.date: Represents a date without time.
datetime.time: Represents a time without date.

Common Functions:

datetime.now(): Returns the currentlocal date and time.
datetime.strptime(date_string, format): Parses a string
representing a date and time.

from datetime import datetime

Get the current date and time

current_datetime = datetime.now()

print("Current Date and Time:", current_datetime)

Parse a date string

date_string="2023-11-09"

parsed_date = datetime.strptime(date_string, "%Y-%m-%d")
print("Parsed Date:", parsed_date)

6.json (JSON Encoding and Decoding):

Purpose: Provides methods for encoding and decoding JSON data.
Common Functions:

json.dumps(obj): Serialize objto a JSON formatted str.
json.loads(s): Deserialize s (a str, bytes, or bytearray instance).
import json

Create adictionary

data={'name': 'John', 'age": 30, 'city": 'New York'}

Convert the dictionary to a JSON string

json_string =json.dumps(data)

print("JSON String:", json_string)

Parse the JSON string back to adictionary

parsed_data =json.loads(json_string)

print("Parsed Data:", parsed_data)

7.subprocess (Subprocess Management):
Purpose: Allows the spawning of additional processes and provides
interfaces for communicating with them.

Python: Building Skills for Software Development | 65

Chapter 7 Python Standard Library

Common Functions:

subprocess.run(command, ...): Run the command with arguments.
import subprocess

Example 1: Run a Shell Command and Capture Output
command="Is-I"

Run the command and capture the output

result = subprocess.run(command, shell=True,
stdout=subprocess.PIPE, text=True)

Print the output

print("Command Output:")

print(result.stdout)

Example 2: Run a Python Script as a Subprocess
python_script = "print('Hello from subprocess!")"

Run the Python script and capture the output

result = subprocess.run(["python", "-c", python_script],
stdout=subprocess.PIPE, text=True)

Print the output
print("\nPython Script Output:")
print(result.stdout)

Example 1 runs the Is -| command using the subprocess.run
function. The stdout=subprocess.PIPEparameter captures the
standard output of the command, and text=True ensures that the
outputis returned as a string. The resultis then printed.

Example 2 runs a simple Python script using the -c option. The script
prints "Hello from subprocess!" to the console. The output of the
scriptis captured and printed.

8.re (Regular Expressions):

Purpose: Provides a set of functions that allows us to search a string
foramatch.

Common Functions:

re.search(pattern, string): Searches the string for a match and
returns a match object if there's a match.

re.findall(pattern, string): Finds all occurrences of the pattern in the
string.

66 | Python: Building Skills for Software Development

Chapter 7 Python Standard Library

* Basic Pattern Matching:
import re
Search for a pattern in a string
pattern = r'\b\w+oo\w+\b'
text = "The cat in the room says meow"
match = re.search(pattern, text)
if match:
print("Found:", match.group())
else:
print("Pattern not found")

* Find All Matches:

import re

Find all occurrences of a pattern in a string

pattern = r\b\w+oo\w+\b'

text = "The cat in the room says meow and the dog outside says
woof"

matches = re.findall(pattern, text)

print("Matches:", matches)

e Capture Groups:
import re
Use parentheses for capturing groups
pattern = r'(\d{2})/(\d{2})/(\d{4})'
date_string = "05/20/2023"
match = re.match(pattern, date_string)
if match:
month, day, year = match.groups()
print(f"Month: {month}, Day: {day}, Year: {year}")
else:
print("Invalid date format")

* Replace and Substitution:

import re

Replace a pattern in a string

pattern = r\bcat\b'

text = "The black cat is on the mat. Another cat is sleeping."
replacement = "dog"

new_text = re.sub(pattern, replacement, text)

print("Original Text:", text)

print("Modified Text:", new_text)

Python: Building Skills for Software Development 67

Chapter 7 Python Standard Library

e Case-Insensitive Matching:

importre

Perform case-insensitive matching

pattern =re.compile(r'python’, re.IGNORECASE)

text = "Python is a popular programming language. python is also
used."

matches = pattern.findall(text)

print("Matches:", matches)

* Anchors and Boundaries:

importre

Use anchors and boundaries

pattern = r'\bword\b'

text="This word is a keyword. Anotherword is not."
matches = re.findall(pattern, text)
print("Matches:", matches)

Examples

1. Testingexamples

Testing is a crucial aspect of software development to ensure that
your code works as expected and to catch any potential issues early
on. In Python, the 'unittest’ module provides a built-in testing
framework. Here's an example demonstrating basic unit testing:

Suppose you have a simple function that adds two numbers in a file
called "'math_operations.py':
math_operations.py
def add_numbers(a, b):
returna + b
Now, you can create a test file, e.g., "test_math_operations.py’,
to write unit tests for this function:
test_math_operations.py
import unittest
from math_operations import add_numbers
class TestMathOperations(unittest. TestCase):
def test_add_numbers(self):
Test the add_numbers function
result = add_numbers(3, 4)
self.assertEqual(result, 7, "Incorrect addition result")
if _name__=='_main__"
unittest.main()

68 | Python: Building Skills for Software Development

Chapter 7 Python Standard Library

In this example:

* Atest class "TestMathOperations’ is created that inherits from
"unittest.TestCase'.

e A test method “test_add _numbers’ is defined to check if the
“add_numbers’ function returns the correct result.

e The “assertEqual’ method is used to verify that the result of
“add_numbers(3, 4) is equal to 7. If not, an error message is
displayed.

To run the tests, execute the test file:
python test_math_operations.py

If the tests pass, you'll see an output indicating that the test ran
successfully. If there are issues, the test framework will provide
information about which tests failed and why.

Besides "assertEqual’, "unittest’ provides other assertion methods
like "assertTrue’, "assertFalse’, "assertRaises’, etc., depending
on the type of test you want to perform.

It's worth noting that there are other testing frameworks available for
Python, such as “pytest’ and "'nose2’, each with its own features and
syntax. The choice of testing framework often depends on personal
preference and project requirements.

Network Programming (sockets)

Network programming with sockets in Python allows you to create
applications that can communicate over a network using the Internet
Protocol (IP). Sockets provide a low-level interface for network
communication. Here's a simple example of a client-server
architecture using sockets:

1. ServerSide:

import socket

Create a socket object

server_socket = socket.socket(socket.AF_INET,
socket. SOCK_STREAM)

Bind the socket to a specific address and port
host="'127.0.0.1"'# Localhost

port=12345

Python: Building Skills for Software Development 69

Chapter 7 Python Standard Library

server_socket.bind((host, port))

Listen forincoming connections

server_socket.listen(5)

print(f"Server listening on {host}:{port}")

while True:

Establish a connection with the client

client_socket, addr = server_socket.accept()
print(f"Got connection from {addr}")

Send a welcome message to the client
message = "Welcome to the server!"
client_socket.send(message.encode('utf-8'))

Receive data from the client
data = client_socket.recv(1024).decode('utf-8')
print(f"Received data: {data}")

Close the connection

client_socket.close()

2. Client Side:

import socket

Create a socket object

client_socket = socket.socket(socket. AF_INET,
socket. SOCK_STREAM)

Connect to the server

host ='127.0.0.1' # Localhost

port = 12345

client_socket.connect((host, port))

Receive the welcome message from the server
message = client_socket.recv(1024).decode('utf-8')
print(f"Received message from the server: {message}")
Send data to the server

data_to_send = "Hello, server!"
client_socket.send(data_to_send.encode('utf-8'))

Close the connection

client_socket.close()

70 | Python: Building Skills for Software Development

Chapter 7 Python Standard Library

In this example:

* The server creates a socket using socket.socket(), binds it to a
specific address and port using bind(), and listens for incoming
connections using listen().

* The client creates a socket, connects to the server using
connect(), and communicates with the server by sending and
receiving data.

To run this example:
* Savethe servercode in afile named server.py.
e Savethe clientcode in afile named client.py.

e Open two terminal windows and run the server in one and the
clientinthe other.

This simple example demonstrates a basic client-server interaction
using sockets. In a real-world scenario, you would handle errors,
implement data serialization, and manage more complex
communication protocols depending on your application's
requirements.

Python: Building Skills for Software Development 71

Chapter 8
Web Development
with Python

72

Python: Building Skills for Software Development

Chapter 8 Web Development with Python

Introduction to Web Development

Web development is the process of creating and maintaining
websites or web applications. It involves various aspects, including
front-end development, back-end development, and the integration
of databases. Web development encompasses a wide range of
technologies, languages, and frameworks. Here's an introduction to
the key components of web development:

1. Front-End Development:
a. HTML (Hypertext Markup Language):

Description: HTML is the standard markup language for creating the
structure and content of web pages. It defines the elements and their
attributes, such as headings, paragraphs, links, images, and forms.

b. CSS (Cascading Style Sheets):

Description: CSS is used for styling HTML elements. It controls the
layout, appearance, and presentation of web pages. With CSS, you
can define colors, fonts, spacing, and responsive designs.

c. JavaScript:

Description: JavaScript is a scripting language that adds
interactivity to web pages. It enables the creation of dynamic content,
client-side validation, and the manipulation of the Document Object
Model (DOM).

d. Front-End Frameworks (e.g., React, Angular,Vue):

Description: Front-end frameworks provide pre-built components
and tools for building user interfaces. They enhance the development
process and facilitate the creation of interactive and responsive web
applications.

2. Back-End Development:

a. Server-Side Languages (e.g., Python, Node.js, Ruby, PHP,
ASP.NET):

Description: Server-side languages handle the logic and
processing on the server. They interact with databases, perform
business logic, and generate dynamic content before sending it to the
client's browser.

Python: Building Skills for Software Development | 73

Chapter 8 Web Development with Python

b. Server-Side Frameworks (e.g., Django, Flask, Express, Ruby
on Rails):

Description: Frameworks provide a structured way to build server-
side applications. They include tools and conventions for handling
routing, middleware, and database interactions, making
development more efficient.

c. Databases (e.g.,MySQL, PostgreSQL, MongoDB):
Description: Databases store and manage the data used by web
applications. They allow for the retrieval, storage, and manipulation
of information. Different types of databases, such as relational and
NoSQL databases, serve various needs.

3. Full-Stack Development:
a. Full-Stack Developers:

Description: Full-stack developers have expertise in both front-end
and back-end development. They can work on the entire web
application stack, from designing user interfaces to implementing
serverlogic and database interactions.

4. Web Development Workflow:
a. Version Control (e.g., Git):

Description: Version control systems like Git help developers track
changes to their code, collaborate with others, and manage different
versions of their projects.

b. IDEs (Integrated Development Environments):

Description: IDEs provide a development environment with features
such as code highlighting, debugging tools, and version control
integration, enhancing the coding experience.

c. BuildTools (e.g.,Webpack, Gulp):

Description: Build tools automate tasks such as bundling,
minification, and transpilation of code. They optimize assets for
deployment and improve the overall performance of web
applications.

5. Web Hosting and Deployment:
a. Web Hosting Services (e.g., Heroku, AWS, DigitalOcean):

74 | Python: Building Skills for Software Development

Chapter 8 Web Development with Python

Description: Web hosting services allow developers to deploy and
run their web applications on servers accessible over the internet.

b. Continuous Integration and Continuous Deployment (CI/CD):
Description: CI/CD practices involve automating the testing,

building, and deployment of code changes. This ensures a more
streamlined and efficient development process.

Conclusion:

Web development is a dynamic field that evolves with new
technologies and trends. Whether you're building a personal
website, an e-commerce platform, or a complex web application,
understanding both front-end and back-end development is essential
for creating effective and user-friendly experiences on the web.

Flask and Django Frameworks

Flask and Django are both popular web frameworks for Python, but
they have different philosophies, use cases, and levels of complexity.
Let's explore each of them:

Flask:

Philosophy:

Flask follows a micro-framework philosophy, providing the essentials
for building web applications withoutimposing a strict structure.

It is designed to be lightweight and flexible, allowing developers to
choose components and libraries based on their needs.

Key Features:

Routing: Define routes for different URLs and handle HTTP
requests.

Templates: Use Jinja2 templating engine for rendering dynamic
content.

ORM Integration: Flask can be used with various ORMs (Object-
Relational Mapping), such as SQLAIchemy.

Extensions: Flask has a modular design with numerous extensions
foradding functionalities like authentication, forms, and more.

Use Cases:

Flask is suitable for small to medium-sized applications or when a
minimalistic approach is preferred.

Python: Building Skills for Software Development | 75

Chapter 8 Web Development with Python

It is often chosen for prototyping, APIs, and projects with specific
requirements that benefit from its simplicity.
Example Code:
from flask import Flask
app =Flask(__name__)
@app.route('/")
def hello_world():
return 'Hello, World!'

if_name__=='__main__"
app.run(debug=True)
Django:

Philosophy:

Django follows the "batteries-included" philosophy, providing a
comprehensive set of features out of the box.

It follows the "Don't Repeat Yourself" (DRY) and "Convention Over
Configuration" principles, promoting code organization and reducing
boilerplate.

Key Features:

Admin Interface: An automatically generated admin interface for
managing application data.

ORM (Object-Relational Mapping): Built-in ORM for database
interactions.

Authentication and Authorization: Includes a user authentication
system with built-in security features.

Template Engine: Uses Django's template engine for rendering
dynamic content.

Forms: Simplifies form handling and validation.

Use Cases:

Django is suitable for larger projects and applications with complex
requirements.

It is commonly used for content management systems, e-
commerce platforms, and any project where a full-stack framework
with built-in features is advantageous.

Example Code:

from django.http import HitpResponse

from django.urls import path

from django.shortcuts import render

76 | Python: Building Skills for Software Development

Chapter 8 Web Development with Python

defindex(request):
return render(request, 'index.html', {'message': 'Hello, World!'})

urlpatterns =|
path(", index, name='index'),
]
Which One to Choose?
Flask:

Choose Flask if you prefer a lightweight framework, want more
flexibility in choosing components, and are working on smaller
projects or prototypes.

Django:

Choose Django if you want a full-stack framework with built-in

features, rapid development capabilities, and a more opinionated
structure. It's well-suited for larger, more complex applications.

Both Flask and Django have active communities, extensive
documentation, and are widely used in the Python web development
ecosystem. The choice between them depends on the specific
requirements of your project and your development preferences.

Building a Simple Web Application

Building a simple web application involves creating both the front-end
and back-end components. In this example, I'll use Flask as the web
framework and HTML for the front-end. The application will consist of
a single page that allows the user to enter their name, and it will
display a personalized greeting.

1. Install Flask:
Make sure you have Flask installed. If not, you can install it using:
pip install flask

2. Createthe Flask Application:
Create afile named "app.py’ with the following content:
from flask import Flask, render_template, request

Python: Building Skills for Software Development | 77

Chapter 8 Web Development with Python

app =Flask(__name__)
@app.route('/', methods=['GET', 'POST")
defindex():
if request.method =='"POST":
name = request.form['name’]
return render_template('greet.html', name=name)
return render_template(‘index.html')

if _name__=='__main__"
app.run(debug=True)

3. Create HTMLTemplates:

Create a folder named “templates’ in the same directory as “app.py .
Inside this folder, create two files: “index.html” and "greet.html".

index.html:

<!DOCTYPE html>

<htmllang="en">

<head>

<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-
scale=1.0">

<title>Simple Web App</title>

</head>

<body>

<h1>Welcome to the Simple Web App!</h1>
<form method="post" action="/">

<label for="name">Enter your name:</label>
<input type="text" id="name" name="name" required>
<button type="submit">Submit</button>
</form>

</body>

</html>

greet.html:

<!IDOCTYPE html>

<htmllang="en">

<head>

<metacharset="UTF-8">

78 | Python: Building Skills for Software Development

Chapter 8 Web Development with Python

<meta name="viewport" content="width=device-width, initial-
scale=1.0">

<title>Greeting</title>

</head>

<body>

<h1>Hello, {{ name }}!</h1>
<p>Thankyou for using the Simple Web App.</p>

</body>

</html>

4.Run the Application:

In the terminal, run the Flask application:

python app.py

Visit "“http://localhost:5000" in your web browser. You'll see the
homepage where you can enter your name. After submitting the
form, you'll be redirected to a personalized greeting page.

This example demonstrates a basic web application using Flask,
HTML, and form handling. Depending on your needs, you can
expand the application by adding more routes, incorporating CSS for
styling, and integrating additional features.

Building a simple web application using Django involves creating
a project, defining models, setting up views, and creating templates.
Inthis example, I'll guide you through building a basic web application
that allows users to enter their name and displays a personalized
greeting. Let's get started:

1.Install Django:

Make sure you have Django installed. If not, you can install it
using:

pip install django

2. Create a Django Project and App:

In your terminal, run the following commands:
Create a Django project

django-admin startprojectmywebapp

Navigate to the project directory

cd mywebapp

Create a Django app

python manage.py startappgreetapp

Python: Building Skills for Software Development 79

Chapter 8 Web Development with Python

3. Define Models:
In the "greetapp/models.py’ file, define a simple model to store user
names:
greetapp/models.py
from django.db import models
class Greeting(models.Model):

name = models.CharField(max_length=100)

def__str__ (self):

return self.name

4. Run Migrations:

Run the following commands to apply migrations and create the
database:

python manage.py makemigrations

python manage.py migrate

5. SetUpViews:
In the "greetapp/views.py’ file, create views to handle rendering the
form and processing user input:
greetapp/views.py
from django.shortcuts import render, redirect
from .models import Greeting
defindex(request):
if request.method =='"POST"
name =request.POST['name']
Greeting.objects.create(name=name)
return redirect('greet’)
return render(request, 'index.html')
def greet(request):
greetings = Greeting.objects.all()
return render(request, 'greet.html’, {'greetings': greetings})

6.SetUp URLs:

Create "urls.py’ in the "greetapp’ directory and define the URLSs:
greetapp/urls.py

from django.urls import path

from .views import index, greet

80 | Python: Building Skills for Software Development

Chapter 8 Web Development with Python

urlpatterns =|
path(", index, name='index'),
path(‘greet/', greet, name='greet’),
]
Include these URLs in the main “urls.py’ file in the "mywebapp’
directory:
mywebapp/urls.py
from django.contrib import admin
from django.urls importinclude, path
urlpatterns =|
path(‘admin/', admin.site.urls),
path(", include('greetapp.urls')),
]

7. CreateTemplates:
Create "templates’ folder in the "greetapp’ directory and add the
following HTML templates.
index.html:
<!-- greetapp/templates/index.html -->
<!DOCTYPE html>
<htmllang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-
scale=1.0">
<title>Simple Web App</title>
</head>
<body>
<h1>Welcome to the Simple Web App!</h1>
<form method="post" action="{% url ‘index’ %}">
{% csrf_token %}
<label for="name">Enter your name:</label>
<input type="text" id="name" name="name" required>
<button type="submit">Submit</button>
</form>
</body>
</html>

Python: Building Skills for Software Development 81

Chapter 8 Web Development with Python

greet.html:
<!-- greetapp/templates/greet.html -->
<IDOCTYPE html>
<htmllang="en">
<head>
<metacharset="UTF-8">
<meta name="viewport" content="width=device-width, initial-
scale=1.0">
<title>Greetings</title>
</head>
<body>
<h1>Greetings</h1>
{% for greeting in greetings %]}
<p>Hello, {{ greeting.name }}!</p>
{% endfor %}
</body>
</html>

8. Runthe Development Server:

In the terminal, run the following command to start the development
server:

python manage.py runserver

Visit "http://localhost:8000 in your web browser. You'll see the
homepage where you can enter your name. After submitting the
form, you'll be redirected to a page displaying personalized
greetings.

This example demonstrates a basic web application using Django,
including model definition, views, templates, and URL routing.
Depending on your needs, you can further enhance the application
by adding more features and improving the user interface.

Working with Databases (SQL and NoSQL)

Working with databases is a fundamental aspect of web
development, allowing you to store, retrieve, and manipulate data for
your applications. Two primary types of databases are SQL
(relational databases) and NoSQL (non-relational databases).
Here's an overview of both

82 | Python: Building Skills for Software Development

Chapter 8 Web Development with Python

SQL Databases:

1. SQLite (Lightweight SQL Database):

a. Introduction:

e SQLite is a C library that provides a lightweight disk-based
database.

e |tdoesn't require a separate server process and allows access to
the database using a nonstandard variant of the SQL query
language.

b. Python Integration:
Python comes with built-in support for SQLite through the
“sqlite3” module.
c. Example Usage:
import sqlite3
Connectto a database (creates a new file if it doesn't exist)
conn = sqglite3.connect('example.db’)
Create a cursor object to interact with the database
Cursor = conn.cursor()
Create atable
cursor.execute(™
CREATE TABLE IF NOT EXISTS users (
idINTEGER PRIMARY KEY,
name TEXT,
age INTEGER

)

")

Insert data into the table

cursor.execute('INSERT INTO users (name, age) VALUES (?, ?)',

(‘'ramsingh’, 25))

Commit the changes and close the connection

conn.commit()

conn.close()

#2.PostgreSQL (Advanced SQL Database):

a. Introduction:

* PostgreSQL is a powerful, open-source relational database
system.

e It supports advanced SQL features and is known for its
extensibility and standards compliance.

b. Python Integration:

The “psycopg2’ library is commonly used for connecting to

PostgreSQL in Python.

Python: Building Skills for Software Development | 83

Chapter 8 Web Development with Python

c. Example Usage:
import psycopg2
Connectto a PostgreSQL database
conn = psycopg2.connect(
host="your_host",
user="your_user",
password="your_password",
database="your_database"
)
Create a cursor object
cursor =conn.cursor()
Execute SQL queries
cursor.execute('SELECT * FROM users')
result=cursor.fetchall()
Commit changes and close the connection
conn.commit()
conn.close()
NoSQL Databases:
1. MongoDB (Document-Oriented NoSQL Database):
a. Introduction:
* MongoDB is a widely used document-oriented NoSQL database.
e |t stores data in flexible, JSON-like documents, allowing for
dynamic schema designs.

b. Python Integration:
The “pymongo’ library is commonly used for connecting to
MongoDB in Python.

c. Example Usage:

from pymongo import MongoClient

Connect to MongoDB

client = MongoClient("your_mongodb_connection_string")
Access a database and collection

db = client'mydatabase']

collection = db['mycollection']

Insert a document

document = {"name": "ram singh", "age": 25}

result = collection.insert_one(document)

84 | Python: Building Skills for Software Development

Chapter 8 Web Development with Python

Query the collection
query_result=collection.find({"age": {"$gte": 21}})
Iterate through the query results
fordocumentin query_result:

print(document)
Close the connection
client.close()

2. Redis (In-Memory Data Structure Store):

a. Introduction:

e Redisis anin-memory data structure store, often used as a cache
or message broker.

* |t supports various data structures such as strings, hashes, lists,
sets, and more.

b. Python Integration:
The “redis’ library is commonly used for connecting to Redis in
Python.

c. Example Usage:
import redis

Connectto Redis

client =rredis.StrictRedis(host='localhost', port=6379, db=0)
Set a key-value pair

client.set('example_key', 'example_value')

Get the value by key

value =client.get(‘example_key")
print(value.decode('utf-8"))

Close the connection

client.close()

Conclusion:

The choice between SQL and NoSQL databases depends on your
application's specific requirements. SQL databases are suitable for
applications with structured data and complex queries, while NoSQL
databases offer flexibility and scalability for applications with
dynamic and unstructured data. The examples provided
demonstrate basic interactions with both SQL and NoSQL databases
using Python.

Python: Building Skills for Software Development | 85

Chapter 9
Data Science and
Python

86

Python: Building Skills for Software Development

Chapter 9 Data Science and Python

Data science is a multidisciplinary field that uses scientific methods,
processes, algorithms, and systems to extract insights and
knowledge from structured and unstructured data. Python has
become a popular programming language in the field of data science
due to its versatility, ease of learning, and a rich ecosystem of
libraries and tools. Here's an overview of data science and the role of
Python in this domain:

Key Components of Data Science:

1. Data Collection:

* Gathering relevant data from various sources, such as
databases, APls, CSV files, and more.

2. Data Cleaning and Preprocessing:
Handling missing values, removing outliers, and transforming
data into a suitable format for analysis.

3. Exploratory Data Analysis (EDA):
Analyzing and visualizing data to understand patterns,
relationships, and distributions.

4. Feature Engineering:
Creating new features from existing data or transforming features
to improve model performance.

5. Model Building:
Developing machine learning models to make predictions,
classifications, or identify patterns.

6. Model Evaluation:
* Assessing the performance of models using metrics and
validation techniques.

7. Model Deployment:
* Integrating models into production systems for real-world
applications.

8. Communication andVisualization:
* Presenting findings and insights to stakeholders through reports,
dashboards, and visualizations.

Python: Building Skills for Software Development | 87

Chapter 9 Data Science and Python

Python in Data Science:

Python is widely used in data science for several reasons:

1. Rich Ecosystem:

* Python has a vast ecosystem of libraries and frameworks
specifically designed for data science, such as NumPy, pandas,
Matplotlib, Seaborn, Scikit-Learn, TensorFlow, and PyTorch.

2. EaseoflLearning:
Python's syntax is clear and readable, making it accessible to
beginners and facilitating collaboration among team members.

3. Community Support:

The Python data science community is active and collaborative,
providing a wealth of resources, tutorials, and solutions to
common challenges.

4. Versatility:

Python is a general-purpose programming language, allowing
data scientists to seamlessly integrate data analysis, machine
learning, and other tasks in a single environment.

5. Integration with Big DataTechnologies:
Python integrates well with big data technologies such as Apache
Spark, making it suitable for handling large-scale datasets.

Example Data Science Workflow in Python:

Import necessary libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

Load dataset

url = 'https://raw.githubusercontent.com/openai/gpt-3.5-
turbo/main/examples/summarization/input.txt'

data = pd.read_csv(url, delimiter="t', names=['X", 'y'])

88 | Python: Building Skills for Software Development

Chapter 9 Data Science and Python

Exploratory Data Analysis (EDA)
sns.scatterplot(x="X", y='y', data=data)
plt.title('Scatter Plot of X vs y')

plt.show()

Data Preprocessing

X =data['X"].values.reshape(-1, 1)

y =data['y'].values

#Train-test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)

Model Building

model = LinearRegression()
model.fit(X_train, y_train)

Model Evaluation

y_pred =model.predict(X_test)

mse =mean_squared_error(y_test,y_pred)
print(fMean Squared Error: {mse}’)

Inthis example, we load a dataset, perform exploratory data analysis,
preprocess the data, and build a simple linear regression model
using Scikit-Learn. This is just a small part of a typical data science
workflow, and Python libraries provide tools for every step of the
process.

Whether you are working on data analysis, machine learning, or any
other aspect of data science, Python's versatility and rich ecosystem
make it a powerful choice for data scientists.

NumPy and NumPy Arrays

NumPy (Numerical Python):

NumPy is a powerful Python library for numerical and mathematical
operations. It provides support for large, multi-dimensional arrays
and matrices, along with a collection of high-level mathematical
functions to operate on these arrays.

Key Features of NumPy:
1. Arrays:
* NumPy arrays are the core data structure inthe library.

* They are similar to Python lists but offer more functionality and
efficiency for numerical operations.

Python: Building Skills for Software Development | 89

Chapter 9 Data Science and Python

2. Vectorized Operations:

* NumPy supports vectorized operations, which means that
operations can be performed on entire arrays without the need for
explicitloops.

3. Broadcasting:

e Broadcasting allows NumPy to perform operations on arrays of
different shapes and sizes.

4. Mathematical Functions:

* NumPy provides a wide range of mathematical functions for
operations like linear algebra, Fourier analysis, random number
generation, etc.

5. Integration with Other Libraries:

* NumPy integrates seamlessly with other libraries like SciPy,
Matplotlib, and pandas.

NumPy Arrays:

NumPy arrays are homogeneous, multi-dimensional, and memory-
efficient data structures. They can be created using lists, tuples, or
otherarrays.

Creating NumPy Arrays:

import numpy as np

Create a 1D array from alist

arr_1id=np.array([1, 2, 3, 4, 5])

Create a2D array from alist of lists

arr_2d=np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])

Create an array of zeros

zeros_array =np.zeros((3, 4))

Create an array of ones

ones_array =np.ones((2, 3))

Create arange of values

range_array =np.arange(0, 10, 2) # start, stop, step

Create alinearly spaced array

linspace_array = np.linspace(0, 1, 5) # start, end, number of points
Create arandom array

random_array = np.random.rand(2, 3) # random values from a
uniform distribution

920 | Python: Building Skills for Software Development

Chapter 9 Data Science and Python

NumPy Array Operations:

Element-wise operations

arr = np.array([1, 2, 3, 4])

result = arr + 2 # [3, 4, 5, 6]

Vectorized operations

arrl = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

result = arr1 + arr2 #[5, 7, 9]

Array broadcasting

matrix = np.array([[1, 2, 3], [4, 5, 6]])

scalar =2

result = matrix * scalar # [[2, 4, 6], [8, 10, 12]]

Array indexing and slicing

arr = np.array([1, 2, 3, 4, 5])

subset = arr[1:4] # [2, 3, 4]

Reshape array

arr = np.array([1, 2, 3, 4, 5, 6])

reshaped_arr = arr.reshape((2, 3))

These examples provide a glimpse into the capabilities of NumPy
and its array operations. NumPy is widely used in scientific
computing, data analysis, machine learning, and other domains
where numerical operations are prevalent.

Data Manipulation with Pandas

Pandas is a popular Python library for data manipulation and
analysis. It provides data structures like Series and DataFrame,
which are designed for efficient and intuitive handling of structured
data. Here's an overview of common data manipulation tasks using
Pandas:

1.Loading Data:

Pandas supports various file formats, such as CSV, Excel, SQL
databases, and more.

import pandas as pd

Load a CSV file into a DataFrame

df =pd.read_csv(‘example.csv')

Load an Excel file into a DataFrame

df_excel = pd.read_excel('example.xlIsx’)

Connectto a SQL database and read data

Python: Building Skills for Software Development 91

Chapter 9 Data Science and Python

import sqlite3

conn = sqlite3.connect(‘example.db')
query ='SELECT * FROM table_name'
df_sql=pd.read_sql_query(query, conn)

2. Exploratory Data Analysis (EDA):

Pandas provides functions to explore and understand the structure of
your data.

Display the first few rows of the DataFrame
print(df.head())

Get basic statistics for numerical columns
print(df.describe())

Check for missing values

print(df.isnull().sum())

Filter and subset data

subset = df[df['Column'] > 50]

Group by and aggregate

grouped_data = df.groupby('Category')['Value'l.mean()

3. DataCleaning:

Pandas helps in cleaning and preprocessing data by handling
missing values, duplicates, and outliers.

Drop rows with missing values

df_cleaned =df.dropna()

Fill missing values with a specific value

df_filled = df.fillna(0)

Remove duplicate rows

df_no_duplicates = df.drop_duplicates()

Remove outliers using z-score

from scipy.stats import zscore

df_no_outliers = df[(np.abs(zscore(df['Column'])) < 3)]

4. DataTransformation:

Pandas facilitates the transformation of data, including creating new
columns, applying functions, and reshaping data.

Create a new column based on existing columns

df['New Column'] = df['Column1'] + df['Column2']

Apply a function element-wise

df['Column’] = df['Column'].apply(lambda x: x*2)

92 | Python: Building Skills for Software Development

Chapter 9 Data Science and Python

Pivot table for reshaping data

pivot_table = df.pivot_table(index='Category', columns='Month',
values='Value', aggfunc="mean’)

Melt to convert wide format to long format

df_long = pd.melt(df, id_vars=['ID'], value_vars=['Jan', 'Feb'],
var_name='Month', value_name="'Value')

5. Merging and Concatenating:

Combine data from multiple sources using merge and concatenate
operations.

Concatenate DataFrames vertically

df_concat=pd.concat([df1, df2])

Merge DataFrames based on acommon column

df_merged = pd.merge(df1, df2, on='"KeyColumn', how='inner')

6. Handling Dates andTimes:

Pandas provides functionality for working with dates and times.
Convert a column to datetime format

df['Date'] = pd.to_datetime(df['Date'])

Extract year, month, day from datetime column
df['Year']=df['Date'].dt.year

df['Month'] = df['Date'].dt.month

df['Day'] = df['Date'].dt.day

7. Handling Categorical Data:

Encode and handle categorical variables.

Convert categorical column to numerical using one-hot
encoding

df_encoded = pd.get_dummies(df, columns=['Category'],
prefix="Category')

Map categorical values to numerical values

mapping ={'Low": 1, 'Medium": 2, 'High": 3}

df'Priority'] = df['Priority'].map(mapping)

Pandas is a powerful tool for data manipulation and analysis in
Python. lts intuitive syntax and rich functionality make it a go-to
choice for working with structured data in various data science and
analysis projects.

Python: Building Skills for Software Development | 93

Chapter 9 Data Science and Python

Data Visualization with Matplotlib and Seaborn

Matplotlib and Seaborn are popular Python libraries for data
visualization. Matplotlib is a comprehensive 2D plotting library, and
Seaborn is built on top of Matplotlib, providing a high-level interface
for drawing attractive statistical graphics. Here's an overview of basic
data visualization using Matplotlib and Seaborn:

Matplotlib:

#Line Plot:

import matplotlib.pyplot as plt
Sample data
x=[1,2,3,4,5]
y=[2,4,6,8,10]

Create aline plot
plt.plot(x, y, label='Line Plot')
Add labels and title
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Line Plot Example')

Show legend

plt.legend()

Show the plot

plt.show()

Scatter Plot:

Create a scatter plot
plt.scatter(x, y, label='Scatter Plot', color="red', marker='0")
Add labels and title
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.title('Scatter Plot Example')
Show legend

plt.legend()

Show the plot

plt.show()

94 | Python: Building Skills for Software Development

Chapter 9 Data Science and Python

Seaborn:

Distribution Plot:

import seaborn as sns

Create a distribution plot

sns.histplot(data=df, x='"Column', kde=True, color='skyblue')
Add labels and title

plt.xlabel('X-axis')

plt.ylabel('Frequency')

plt.title('Distribution Plot Example')

Show the plot

plt.show()

Box Plot:

Create a box plot

sns.boxplot(data=df, x="Category', y="Value', palette='Set2')
Add labels and title

plt.xlabel('Category')

plt.ylabel('Value')

plt.title('Box Plot Example')

Show the plot

plt.show()

Combining Matplotlib and Seaborn:

While Seaborn simplifies the creation of certain plots, Matplotlib can
still be used for customization.

Create a scatter plot with Seaborn

sns.scatterplot(x='Column1’, y="Column2', data=df, hue='Category’',
palette='viridis')

Add labels and title using Matplotlib

plt.xlabel('X-axis')

plt.ylabel('Y-axis')

plt.title('Scatter Plot with Seaborn')

Show the legend

plt.legend()

Show the plot

plt.show()

These are just simple examples, and both Matplotlib and Seaborn
offer a wide range of customization options for creating more
complex and informative visualizations. Whether you need basic line
plots or advanced statistical graphics, these libraries provide tools to
meet your data visualization needs in Python.

Python: Building Skills for Software Development | 95

Chapter 10
Testing and Debugging

96

Python: Building Skills for Software Development

Chapter 10 Testing and Debugging

Testing and debugging are critical aspects of the software
development process to ensure that your code functions correctly
andis free of errors.

Writing Tests with unit test

Unittest is the built-in testing framework in Python. It provides a set of
tools for constructing and running tests, and it follows the xUnit style.
Here's an overview of writing tests with "unittest:

Basic Structure of aTest:
1. TestClass:
e Create atestclassthatinherits from "unittest. TestCase'.
e Eachtestis a method within this class.
import unittest
class MyTests(unittest. TestCase):
deftest_example(self):
#Your test code here
self.assertEqual(1+1,2)

2. Assertions:
e Use assertion methods like “assertEqual’, "assertTrue’,
‘assertFalse’, etc., to check if the expected conditions are met.
e [fanassertion fails, the test fails.
ExampleTest Case:
1. Considerasimple function that adds two numbers:
#my_module.py
defadd(a, b):
returna+b
Now, let's write a test case for this function:
#test_my_module.py
import unittest
from my_module import add
class TestAddFunction(unittest. TestCase):
def test_add_positive_numbers(self):
result = add(3, 4)
self.assertEqual(result, 7)
def test_add_negative_numbers(self):
result = add(-2, 5)

Python: Building Skills for Software Development 97

Chapter 10 Testing and Debugging

self.assertEqual(result, 3)
deftest_add_zero(self):
result=add(0, 0)
self.assertEqual(result, 0)
if_name__=='__main__"
unittest.main()

RunningTests:

1. Command Line:

* Runthetestsfromthe commandline:
python -m unittest test_my_module.py

2. TestDiscovery:
e If you have multiple test modules, you can use test discovery:
python -m unittest discover

Test Fixtures:
“unittest” supports the use of test fixtures to set up and tear down
resources for your tests. Fixtures are functions or methods that are
run before or after each test method.
import unittest
class MyTests(unittest. TestCase):
def setUp(self):
Code to run before each test method
pass
def tearDown(self):
Code to run after each test method
pass
def test_example(self):
Your test code here
self.assertEqual(1 + 1, 2)

Skipping Tests:
You can skip certain tests using the "~ @unittest.skip™ decorator or
conditionally skip them using "unittest.skiplf or "unittest.skipUnless’.

import unittest

98 | Python: Building Skills for Software Development

Chapter 10 Testing and Debugging

class MyTests(unittest. TestCase):
@unittest.skip("Skipping this test")
def test_example(self):
self.assertEqual(1 + 1, 2)
@unittest.skiplf(True, "Skipping this test conditionally")
deftest_another_example(self):
self.assertEqual(2 * 2, 4)

Conclusion:

“unittest” provides a robust and built-in framework for writing and
running tests in Python. While other testing frameworks like “pytest’
and ‘nose’ offer additional features and flexibility, "unittest’ is widely
used and is part of the standard library. Choose the testing
framework that best fits your project's requirements and your
personal preferences.

Best Practices

Best practices in software development aim to enhance code quality,
maintainability, and collaboration. Here are some general best
practices for writing Python code:

1. Code Readability:

e Follow PEP 8(https://www.python.org/dev/peps/pep-0008/) for
Python style guide conventions.

* Use meaningful variable and function names.

* Write comments for complex sections of code but strive for self-
explanatory code.

2. Modularization:
e Break down your code into small, reusable functions or classes.
* Use modules and packages to organize code logically.

3. Docstrings:
e Include docstrings for modules, classes, and functions to provide
documentation.

* Follow PEP 257(https://www.python.org/dev/peps/pep-0257/)
for docstring conventions.

Python: Building Skills for Software Development | 99

. Testing:

Write unit tests for your code using frameworks like "unittest’,
‘pytest’, or 'nose’.

Aim for comprehensive test coverage to ensure the correctness
of your code.

Run tests regularly and automate testing where possible.

. Version Control:

Use version control systems like Git.
Commit frequently with clear and concise commit messages.
Branch your code for features or bug fixes.

. Virtual Environments:

Use virtual environments (e.g., 'venv' or "virtualenv’) to isolate
project dependencies.

Include a ‘requirements.txt’ file for specifying project
dependencies.

. ErrorHandling:
Use try-except blocks for handling exceptions.
Log errors to help diagnose issues in production.

Avoid using bare “except:’ clauses; specify the exception type
whenever possible.

. UseList Comprehensions:

Utilize list comprehensions for concise and readable code when
creating lists.

squares =[x**2 forxin range(10)]

. Generators:

Use generators for memory-efficient iteration when dealing with
large datasets.

defsquare_numbers(n):
foriin range(n):
yieldi**2

| Python: Building Skills for Software Development

Chapter 10 Testing and Debugging

10. Avoid Global Variables:

* Minimize the use of global variables; prefer passing parameters
tofunctions.

e Use constants (uppercase) for variables that should not be
modified.

11.Consistent Naming Conventions:

* Follow consistent naming conventions for variables, functions,
and classes.

e Use snake_case for variables and functions, and CamelCase for
classes.

12.Continuous Integration:
* Use continuous integration tools (e.g., Travis Cl, Jenkins, GitHub
Actions) to automate testing and ensure code quality.

13. Optimize Imports:
* Onlyimport what you need to avoid cluttering the namespace.
e Group imports according to PEP 8 recommendations.

14.Security Best Practices:

* Be mindful of security considerations (e.g., input validation,
avoiding SQL injection).

* Regularly update dependencies to patch security vulnerabilities.

15. Performance Optimization:
* Profile your code usingtools like "cProfile” to identify bottlenecks.
* Optimize critical sections based on profiling results.

16. Consistent Formatting:
e Use an automated code formatter like “black’ to maintain
consistent formatting.

These best practices contribute to writing maintainable, scalable,
and error-free Python code. Following them helps improve
collaboration among team members and facilitates the long-term
maintenance of your codebase.

Python: Building Skills for Software Development | 101

Chapter 11
Deployment
and Packaging

102 Python: Building Skills for Software Development

Chapter 11 Deployment and Packaging

Packaging Your Python Application

Packaging a Python application involves organizing your code and
resources into a distributable format that can be easily installed and
distributed to users or other developers. Here's an overview of the
process:

1. Project Structure:

Maintain a well-organized directory structure for your project. A
typical structure mightinclude:

your_project/
— your_package/
| b—__init__.py

| —module1.py
| L—module2.py

—README.md
— setup.py
L— requirements.txt

* ‘your_package : Contains your actual Python code (modules,
packages).

e "README.md : Documentation for your project.
* “setup.py : Script for packaging and distribution.
* ‘requirements.txt : List of dependencies.

2. Creating setup.py:

* setup.py is a Python script that contains information about your
package and how it should be installed.

from setuptools import setup, find_packages
setup(
name='your_package_name',
version='1.0.0',
packages=find_packages(),

Python: Building Skills for Software Development 103

Chapter 11 Deployment and Packaging

install_requires=['dependency1’, 'dependency2'],
entry_points={

6.

‘console_scripts': [

'your_script_name=your_package.module:
main_function’,

1,
b

author='Your Name',

author_email='your@email.com’,
description='Description of your package',
url="https://github.com/your_username/your_package',

Replace placeholders (‘your_package_name’,
“dependency1’, etc.) with your package's information.

‘entry_points’: Define any command-line scripts associated
with your package.

Adding__init__.py:
Include a__init__.py file in your package directories to indicate
that they are Python packages.

Documentation:

Provide comprehensive documentation, including a
README.md file, usage instructions, and examples.

Version Control:

Use version control (e.g., Git) to manage your project and make it
accessible for distribution.

Building and Distributing:
Use tools like setuptools or wheel to build your package.

Create a source distribution
python setup.py sdist

Create a wheel distribution
python setup.py bdist_wheel

104

| Python: Building Skills for Software Development

Chapter 11 Deployment and Packaging

7. Upload to Package Index (PyPI):

Publish your package on PyPI for easy installation by others.
Upload to PyPlusingTwine

pip install twine

twine upload dist

8. Installation:
Toinstall your package from PyPI:
pip install your_package_name

9. Testing Installation:

Create a new virtual environment and test the installation of your
package:

Create a virtual environment

python -m venv myenv

source myenv/bin/activate # Activate the virtual environment

Install your package

pip install your_package_name

10. Continuous Integration (Cl):
e Set up CI/CD pipelines (e.g., GitHub Actions, Travis CI) to
automate package building and testing.

Packaging your Python application involves making it easily
installable and distributable. By following above steps and best
practices, you can create a well-structured, documented, and easily
installable package for your Python project.

Deploying Python Applications

Deploying Python applications involves making your application
available for use by end-users or making it accessible on servers or
cloud platforms. The deployment process varies based on the type of
application (web, desktop, API, etc.) and the hosting environment.
Here's an overview of deploying different types of Python
applications:

Python: Building Skills for Software Development | 105

Chapter 11 Deployment and Packaging

1. Web Applications:
a. UsingWeb Frameworks (e.g., Flask, Django):
Deployment to aWeb Server:

e Use application servers like Gunicorn, uWSGl, or ASGI servers
for deploying Flask or Django applications.

* Deploy behind a reverse proxy server like Nginx or Apache for
handling client requests.

Cloud Platform Deployment:

* Host applications on cloud platforms like AWS, Google Cloud
Platform, or Heroku.

* Platforms often provide specific deployment guides for popular
frameworks.

b. Serverless Deployment:
Deploying as Serverless Functions:

e Utilize serverless platforms like AWS Lambda, Azure Functions,
or Google Cloud Functions.

* Frameworks like Zappa (for Flask/Django) or Serverless
Framework simplify deployment to serverless environments.

2. Desktop Applications:

* Use packaging tools like Pylnstaller, cx_Freeze, or Py2exe to
create standalone executables for Windows, macOS, or Linux
platforms.

* Distribute the compiled executables to end-users or through
platforms like the Microsoft Store, Apple App Store, or Snapcraft
(for Linux).

3. APls:

* Deploy APIs using frameworks like Flask or FastAPl on web
servers or cloud platforms.

e Secure the API endpoints using authentication mechanisms
(e.g., JWT, OAuth).

106 | Python: Building Skills for Software Development

Chapter 11 Deployment and Packaging

4. Continuous Integration/Continuous Deployment (CI/CD):

Set up CI/CD pipelines (using tools like Jenkins, GitLab CI/CD,

GitHub Actions) to automate the build, test, and deployment

processes.

* Automate deployment to your hosting environment when
changes are pushed to version control.

5. Docker Containers:

Containerize your application using Docker for consistency

across different environments.

e Deploy Docker containers to container orchestration platforms
like Kubernetes or Docker Swarm.

6. Database Deployment:

Configure and deploy databases separately based on the type of

application (SQL, NoSQL).

* Use managed database services provided by cloud platforms for
easier management and scalability.

7. Monitoring and Logging:

Implement logging and monitoring tools (e.g., Prometheus,
Grafana, ELK Stack) to track application performance and errors
in production environments.

e Setupalertsforcritical issues.

8. Security Considerations:

Secure sensitive data using encryption and follow best practices

for user authentication and authorization.

* Regularly update dependencies and libraries to patch security
vulnerabilities.

Conclusion:

Deploying Python applications involves various steps based on the
application type and the hosting environment. It's crucial to follow
best practices, automate where possible, and ensure that your
application is secure and performs well in production environments.
Each deployment may have its specific requirements, so refer to
platform-specific documentation or guidelines for a smoother
deployment experience.

Python: Building Skills for Software Development | 107

Chapter 11 Deployment and Packaging

Virtual Environments for Isolation

Virtual environments in Python are used to create isolated
environments with their own Python installations and package
dependencies. They allow you to work on multiple projects with
different dependency requirements without conflicts. Here's an
overview of using virtual environments:

1. CreatingVirtual Environments:

Using venv (Built-in):

e Create anew virtual environmentin a directory:
python -m venv myenv

* Activate the virtual environment:

Windows:

myenv\Scripts\activate

Unix or MacOS:

source myenv/bin/activate

2. Managing Packages:

* Install packages within the virtual environment using pip:
pip install package_name

* Tofreezeinstalled packages into a requirements.txtfile:
pip freeze > requirements.txt

e Install dependencies from a requirements.txtfile:
pip install -r requirements.txt

3. Deactivating the Virtual Environment:
To deactivate the virtual environment:
deactivate

4. Benefits of Virtual Environments:

Isolation: Each environment has its own set of dependencies,

avoiding conflicts between different projects.

* Portability: Virtual environments can be easily shared and
recreated on different systems.

* Dependency Management: Facilitates clean installation and
management of project-specific dependencies.

108 | Python: Building Skills for Software Development

Chapter 11 Deployment and Packaging

4. Benefits ofVirtual Environments:

e Isolation: Each environment has its own set of dependencies,
avoiding conflicts between different projects.

* Portability: Virtual environments can be easily shared and
recreated on different systems.

* Dependency Management: Facilitates clean installation and
management of project-specific dependencies.

5. Using OtherTools:
virtualenv:

An alternative to venv, virtualenv is a third-party package for creating
virtual environments.

pip install virtualenv

virtualenv myenv
* Activation and usage are similarto venv.
pipenv:

* A higher-level tool that combines package management and
virtual environment creation.

pip install pipenv
pipenv install package_name

e Manages both package installation and virtual environments
through a Pipfile and Pipfile.lock.

conda:

From the Anaconda distribution, conda manages environments and
packages, particularly useful for data science applications.

conda create --name myenv python=3.8
conda activate myenv

Python: Building Skills for Software Development 109

Chapter 12
Advanced
Python Concepts

110

Python: Building Skills for Software Development

Chapter 12 Advance Python Concepts

Metaclasses

Metaclasses in Python are classes responsible for creating classes.
They offer a way to modify the behavior of class creation and control
how classes are defined. Understanding metaclasses is an
advanced topic in Python and is used in specific scenarios.

Here's an overview of metaclasses:

1. Basics of Metaclasses:

* InPython, everything is an object, including classes. A class itself
is an instance of a metaclass.

e Thedefault metaclass in Python is type. When you create a class,
Python implicitly uses type as the metaclass.

* Metaclasses allow you to customize how classes are created by
defining the __new__ and __init__ methods. _ _new__ is used
for creating the object, while __init__initializesiit.

2. Creating Metaclasses:
You can create a custom metaclass by subclassing type:
class CustomMeta(type):
def__new__(cls, name, bases, dct):
Modify or customize the class creation process here
return super().__new__(cls, name, bases, dct)
def__init__(self, name, bases, dct):
super().__init__(name, bases, dct)
Additional initialization if needed

3. Using Metaclasses:

To use a custom metaclass, you define a class and specify the
metaclass using the metaclass keyword argument:

class MyClass(metaclass=CustomMeta):

Class definition here

pass

4. Use Cases of Metaclasses:

e Framework Creation:Metaclasses can be used to create
frameworks where classes automatically register themselves or
enforce certain behaviors.

Python: Building Skills for Software Development | 111

Chapter 12 Advance Python Concepts

* API Design: They can be utilized to enforce rules, validate class
attributes, or modify class behavior at the time of creation.

* Singleton Pattern:Metaclasses can be used to implement the
Singleton design pattern by controlling the instantiation of
classes.

* ORMs (Object-Relational Mappers): Some ORMs use
metaclasses to map class attributes to database columns.

5. Considerations:
Metaclasses are powerful but can make code less readable and
more complex. They should be used sparingly when simpler
solutions aren'tfeasible.
Overusing metaclasses can lead to code that's difficult to understand
and maintain, so they're usually reserved for advanced scenarios.
Example:
Here's a simple example demonstrating the usage of a metaclass:
class CustomMeta(type):
def__new__ (cls, name, bases, dct):

dct['custom_attr']=100

Adding a custom attribute to classes

return super().__new__(cls, name, bases, dct)
class MyClass(metaclass=CustomMeta):
pass
print(MyClass.custom_attr) # Output: 100
This example illustrates how the metaclassCustomMeta modifies the
class creation process by adding a custom attribute custom_attr to
classes created with it.
Metaclasses are a powerful tool in Python, but they're generally
considered advanced and might not be necessary for most everyday
programming tasks. Understanding them can be beneficial for
scenarios where customization of class creation is required.

Design Pattern in Python

Design patterns are reusable solutions to common problems in
software design. They provide templates and guidelines to solve
specific problems effectively in a flexible and maintainable way.
Python supports various design patterns, and understanding them
can significantly improve your code's structure and maintainability.
Here are some commonly used design patterns in Python:

112 | Python: Building Skills for Software Development

Chapter 12 Advance Python Concepts

1. Creational Design Patterns:
a. Singleton Pattern:

Ensures a class has only one instance and provides a global point
of accesstoit.

b. Factory Method Pattern:

Defines an interface for creating an object but allows subclasses
to alter the type of objects that will be created.

c. Abstract Factory Pattern:

Provides an interface to create families of related or dependent
objects without specifying their concrete classes.

2. Structural Design Patterns:
a. Adapter Pattern:

Allows objects with incompatible interfaces to collaborate by
converting the interface of one class into another interface that
clients expect.

b. Decorator Pattern:

Adds behavior to objects dynamically without affecting other
objects of the same class.

c. Facade Pattern:

Provides a unified interface to a set of interfaces in a subsystem,
implifying their usage.

3. Behavioral Design Patterns:

a. Observer Pattern:
Defines a one-to-many dependency between objects where
changes in one object trigger updates in other objects.

b. Strategy Pattern:

Defines a family of algorithms, encapsulates each one, and
makes them interchangeable. Clients can choose the appropriate
algorithm.

c. Command Pattern:

Encapsulates a request as an object, thereby allowing
parameterization of clients with queues, requests, and
operations.

Python: Building Skills for Software Development | 113

Chapter 12 Advance Python Concepts

Implementation in Python:

Each pattern has a specific implementation tailored to the problem it
solves. Python's flexibility allows for elegant and concise
implementations:

Singleton Pattern Example:
class Singleton:
_instance =None
def __new__(cls):
if not cls._instance:
cls._instance =super().__new__(cls)
return cls._instance
singleton1 = Singleton()
singleton2 = Singleton()
print(singleton1 is singleton2) # Output: True (both variables refer
tothe same instance)

Observer Pattern Example:
class Subject:
def__init__(self):
self._observers =[]
def attach(self, observer):
self._observers.append(observer)
def notify(self, message):
for observerin self._observers:
observer.update(message)
class Observer:
def update(self, message):
print(f"Received message: {message}")
subject = Subject()
observer1 = Observer()
observer2 = Observer()
subject.attach(observer1)
subject.attach(observer2)
subject.notify("Hello Observers!")

114 | Python: Building Skills for Software Development

Chapter 12 Advance Python Concepts

Conclusion:

Design patterns help solve recurring problems in software
development by providing proven solutions. They improve code
readability, maintainability, and scalability. While these patterns are
powerful, it's essential to apply them judiciously, considering the
context and specific requirements of your project, to avoid over-
engineering or unnecessary complexity.

Functional Programming in Python

Functional programming (FP) is a paradigm that treats computation
as the evaluation of mathematical functions and avoids changing
state or mutable data. Python supports functional programming
concepts and offers features that enable functional programming
practices. Here's an overview of functional programming in Python:

1. First-Class Functions:
In Python, functions are first-class citizens, meaning they can be:
* Assignedtovariables.
e Passedas arguments to other functions.
* Returned as values from other functions.

2. Lambda Functions:
Lambda functions (anonymous functions) can be defined using
the 'lambda’ keyword:

square =lambda x: x ** 2

print(square(5)) # Output: 25

* Lambda functions are often used in functional programming
paradigms to create simple functions on-the-fly.

3. Higher-Order Functions:

Python supports higher-order functions, which are functions that take
other functions as arguments or return them as results.
defapply_operation(func, x, y):

return func(x, y)

defadd(a, b):

returna+b

result = apply_operation(add, 4, 5)

print(result) # Output: 9

Python: Building Skills for Software Development 115

Chapter 12 Advance Python Concepts

4. Map,Filter,and Reduce:

map() Function: Applies afunctionto all items in an input list.
number=[1, 2, 3,4, 5]

squared = list(map(lambda x: x ** 2, numbers))
print(squared) # Output: [1,4,9,16,25]

» filter() Function: Filters elements based on a given function.
numbers=[1,2, 3,4,5, 6]

evens = list(filter(lambda x: x % 2 == 0, numbers))

print(evens) # Output: [2, 4, 6]

* reduce() Function (in the ‘functools™ module): Applies arolling
computation to sequential pairs of values.

from functools import reduce
numbers=[1,2, 3,4, 5]

product = reduce(lambda x, y: x * y, numbers)
print(product) # Output: 120(1*2*3*4 *5)

5. Immutable Data and Avoiding Side Effects:

0 Functional programming encourages the use of immutable data
structures to avoid side effects.

0 Python has immutable types like tuples and sets, and immutable
data can be used to prevent unintended changes.

6. Generator Functions and lterators:

Generator functions (‘yield" keyword) and iterators (‘iter()’ and
“next()’) allow lazy evaluation and can be used for efficient handling
of sequences and data streams.

Conclusion:

Functional programming concepts in Python enable a more
declarative and expressive coding style. While Python is not a purely
functional language, it supports functional programming paradigms,
allowing developers to write code that is more concise, reusable, and
easier to reason about in certain scenarios. Embracing functional
programming can lead to cleaner and more modular code, especially
in cases where immutability and higher-order functions are
beneficial.

116 | Python: Building Skills for Software Development

Chapter 13
Real-World Project

Python: Building Skills for Software Development

117

Chapter 13 Real World Project

Building a Command-Line Tool

Building a command-line tool in Python involves creating an
application that can be executed from the terminal or command
prompt, accepting user input as arguments or options. Here's a basic
overview of building a command-line tool using Python:

1. Choose a Framework or Library (Optional):
a. **Argparse** (Standard Library):

Python's "argparse” module is part of the standard library and allows
parsing command-line arguments and options.

b. Click,docopt, Fire,etc.(Third-party Libraries):
These libraries simplify building command-line interfaces in Python
and provide additional features for argument parsing and handling.

2. Definethe Command-Line Interface:
Using argparse:

Define a parser and add arguments and options:
import argparse

parser = argparse.ArgumentParser(description='"Description of your
command-line tool')

parser.add_argument(‘arg1’, help='"Description of argument 1')

parser.add_argument('--option', help='Description of an optional
argument', default="default_value')

Using other libraries:

Different libraries have their syntax for defining commands and
options. Refer to their documentation for specific usage.

3. Implement Functionality:
Define functions that correspond to the command-line operations.
def run_command(arg1, option):
Implement functionality using provided arguments and
options
print(fExecuting command with arg1: {arg1} and option:
{option})

118 | Python: Building Skills for Software Development

Chapter 13 Real World Project

4. Parse Command-Line Arguments and Execute:

Using "argparse:

Parse arguments and execute corresponding functions based on
userinput:

args = parser.parse_args()

run_command(args.arg1, args.option)

Using other libraries:

Execute commands or call functions based on user input according
to the library's documentation.

5. Packaging and Distribution (Optional):

Package your tool using tools like “setuptools’ or “pyinstaller’ to
create distributable packages or executable files.
Example (Using "argparse’):
import argparse
def run_command(arg1, option):
print(f'Executing command with arg1: {arg1} and option: {option}')
def main():
parser = argparse.ArgumentParser(description='Description of
your command-line tool')
parser.add_argument(‘arg1’, help='"Description of argument 1')
parser.add_argument('--option', help='Description of an optional
argument', default='default_value')
args = parser.parse_args()
run_command(args.arg1, args.option)
if_name__=="__main__":
main()
Running theTool:
Save the script and execute it from the terminal or command prompt,
passing required arguments and options:
python script_name.py arg_value --option option_value
Conclusion:
Building a command-line tool in Python involves defining a
command-line interface, parsing arguments, implementing
functionality, and handling user input. Different libraries or
frameworks offer varying levels of convenience and features for
building robust and user-friendly command-line interfaces. Choose a
suitable approach based on the complexity and requirements of your
tool.

Python: Building Skills for Software Development | 119

Chapter 13 Real World Project

Developing a Web Application using Django

Developing a web application using Django involves setting up the
Django framework, defining models, views, templates, and
configuring URLs to create a fully functional web application. Here
are the steps to create a basic web application using Django:

1. Install Django:
Install Django using pip:
pip install django

2. Create aDjango Project:
Use the Django command-line tool to create a new project:
django-admin startprojectproject_name

3. Createan App:

In Django, an app is a web application. Create an app within your
project:

cd project_name

python manage.py startappmyapp

4. Define Models:
Edit the "'models.py’ file in your app directory (‘myapp’) to define
data models using Django's ORM (Object-Relational Mapping):
Example model
from django.db import models
class ltem(models.Model):

name = models.CharField(max_length=100)

description = models.TextField()

def __str__ (self):

return self.name

5. Create Database Tables:

Run database migrations to create database tables based on your
models:

python manage.py makemigrations

python manage.py migrate

120 | Python: Building Skills for Software Development

Chapter 13 Real World Project

6. DefineViews:
Create views in your app's "views.py' file to handle HTTP requests
and generate responses:
Example view
from django.shortcuts import render
from .models import ltem
defitem_list(request):
items = Item.objects.all()
return render(request, 'item_list.html', {'items". items})

7. CreateTemplates:
Create HTML templates in the "templates’ directory within your app
to render dynamic content:
Example template ("item_list.html’):
<!DOCTYPE html>
<html>
<head>
<title>ltem List</title>
</head>
<body>
<h1>ltems:</h1>

{% for item in items %]}
{{ item.name }}
{% endfor %}

</body>
</html>
8. Configure URLs:
Define URL patterns to map views in your app's “urls.py’ file:
Example URL configuration in your app's urls.py
from django.urls import path
from .views import item_list
urlpatterns = |
path(‘items/', item_list, name='item_list'),

]

Python: Building Skills for Software Development 121

Chapter 13 Real World Project

9. Runthe Development Server:
Startthe Django development server:
python manage.py runserver

10. Access the Application:
Visit "http://127.0.0.1:8000/items/ in your web browser to access the
application.

Conclusion:

This is a basic guide to create a web application using Django.
Django offers many features like authentication, admin panel, form,
etc., which can be incorporated into your application based on your
requirements. Django's documentation provides in-depth
information on various aspects of building web applications using
Django.

Date Analysis and Visualization Project

A data analysis and visualization project involves analyzing datasets
to gain insights and presenting those findings through visualizations.
Python offers various libraries like Pandas, Matplotlib, Seaborn, and
others, which are commonly used for data analysis and visualization.
Here's a high-level overview of creating a data analysis and
visualization project using Python:

1. Define the Problem and Goals:

Identify the problem statement and set goals for what insights or
conclusions you aim to derive from the data.

2. Acquire and Preprocess Data:

e Data Collection: Obtain the dataset from reliable sources or
databases.

e Data Cleaning: Handle missing values, outliers, and
inconsistencies inthe data. Convert data types if necessary.

3. Exploratory Data Analysis (EDA):
Use Pandas to explore and understand the data:
e Descriptive Statistics: Summary statistics, distributions, etc.

* Data Visualization: Create basic plots to visualize relationships
andtrends in the data.

122 | Python: Building Skills for Software Development

Chapter 13 Real World Project

A data analysis and visualization project involves analyzing datasets
to gain insights and presenting those findings through visualizations.
Python offers various libraries like Pandas, Matplotlib, Seaborn, and
others, which are commonly used for data analysis and visualization.
Here's a high-level overview of creating a data analysis and
visualization project using Python:

4. DataMainpulation and Transformation:
Perform necessary transformations or aggregations on the data
using Pandas or NumPy:

* Filtering, sorting, grouping, merging datasets, etc.

5. Advanced Analysis:

Conduct in-depth analysis or apply statistical methods to derive
insights:

0 Correlation analysis, regression, hypothesis testing, etc.

6. Visualization:

Use Matplotlib, Seaborn, or other libraries to create informative and
visually appealing plots:

e Scatter plots, histograms, bar plots, heatmaps, etc.

7. Storytelling and Presentation:

* Organize the insights gained into a coherent narrative or story.

* Create a report or presentation using Jupyter Notebooks,
PowerPoint, or other tools to convey findings effectively.

Example Workflow (using Python Libraries):
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

#1.Data Acquisition and Preprocessing
data=pd.read_csv('dataset.csv')
Data cleaning, handling missing values, etc.

2. Exploratory Data Analysis (EDA)
Descriptive statistics
print(data.describe())

Python: Building Skills for Software Development 123

Chapter 13 Real World Project

Data visualization

plt.figure(figsize=(8, 6))

sns.scatterplot(x='feature1', y="feature2', data=data)
plt.title('Relationship between Feature 1 and Feature 2')
plt.show()

3. Data Manipulation and Transformation
Perform data transformations or aggregations

#4. Advanced Analysis
Apply statistical methods or conduct in-depth analysis

#5.Visualization
plt.figure(figsize=(8, 6))
sns.histplot(data['feature3d'], bins=20)
plt.title('Distribution of Feature 3')
plt.show()

#6. Storytelling and Presentation
Organize findings into areport or presentation

Conclusion:

A data analysis and visualization project in Python involves several
stages from data acquisition to storytelling. Python's libraries offer a
robust ecosystem for data analysis, manipulation, visualization, and
reporting, enabling comprehensive exploration and communication
of insights from the data. Adjust the workflow based on your specific
project requirements and data characteristics.

124 Python: Building Skills for Software Development

Chapter 14
Appendices

Python: Building Skills for Software Development 125

Chapter 14 Appendices

Python 2 vs. Python 3

Python 2 and Python 3 are two different versions of the Python
programming language. Here are some key differences between the
two:

Python 2:

* Legacy Version: Python 2 was released in 2000 and has been
the standard version of Python for many years.

* End of Life: Python 2 reached its end-of-life on January 1, 2020,
and is no longer officially maintained.

* Print Statement: In Python 2, the “print’ statement is used
without parentheses: “print "Hello, World!"".

* Handling: String handling and Unicode support are different from
Python 3, which sometimes led to encoding/decoding issues.

e Division: In Python 2, dividing two integers would return an
integer if both numbers were integers ("5/2" would return '27). To
get a floating-point result, you'd have to use "from __future__
import division” oruse '5.0/2 to force floating-point division.

* Library Support: While many libraries were developed for
Python 2, newer libraries and updates are primarily targeted at
Python 3.

Python 3:

e Current Version: Python 3 was released in 2008 and is the
actively developed and maintained version.

* Print Function: In Python 3, the "print' statement was replaced
with a print function requiring parentheses: "print("Hello,
World!")".

* Unicode Handling: Python 3 handles strings as Unicode by
default, simplifying handling of text and characters.

e Division: In Python 3, division of two integers returns a float by
default (‘5 /2 would return "2.5%). Integer division can be done
using'5//2".

e Library Support: Newer libraries and updates are focused on
Python 3, while some older libraries might not be fully compatible.

126 | Python: Building Skills for Software Development

Chapter 14 Appendices

Which Version to Use:

e Python 3: It's strongly recommended to use Python 3 for all new
projects. It offers many improvements over Python 2, including
better Unicode support, cleaner syntax, and ongoing support
from the Python community.

* Migration: For projects still using Python 2, it's advisable to

migrate to Python 3, as Python 2 is no longer maintained, making
it vulnerable to security risks and lacking updates or new features.

Conclusion:

Python 3 is the current and recommended version of Python for all
new projects. It offers numerous improvements and is the version
that continues to receive active support and updates from the Python
Software Foundation. If possible, it's highly recommended to migrate
any existing Python 2 code to Python 3.

Python Resources

Certainly! Here's a list of valuable Python resources that can help
beginners and advanced users alike to learn, practice, and deepen
their understanding of Python:

Online Learning Platforms:

1. Coursera: Offers Python courses from top universities like
University of Michigan, Rice University, etc.

2. edX: Provides Python courses from MIT, Harvard, and other
prestigious institutions.

3. Udemy: Hosts numerous Python courses catering to different
skill levels and specializations.

4. Codecademy: Provides an interactive platform to learn Python
through coding exercises.

5. SoloLearn: Offers free Python courses and a mobile app for
learning on-the-go.

Books:

1. "Automate the Boring Stuff with Python" by Al Sweigart:
Great for beginners and covers practical applications.

Python: Building Skills for Software Development | 127

Chapter 14 Appendices

2. "Python Crash Course" by Eric Matthes: Covers Python
fundamentals and project-based learning.

3. "Fluent Python" by Luciano Ramalho: For more experienced
Python programmers wanting to deepen their understanding.

4. "Effective Python: 90 Specific Ways to Write Better Python"
by Brett Slatkin: Focuses on best practices and idiomatic Python
coding.

Documentation and Tutorials:

1. Python Official Documentation: An essential resource for
understanding the Python language and its libraries.

2. Real Python: Offers tutorials, articles, and courses suitable for all
skill levels.

3. GeeksforGeeks Python: Provides tutorials, code snippets, and
articles for Python programming.

4. W3Schools Python Tutorial: Beginner-friendly tutorials
covering Python basics.

Practice Platforms:

1. LeetCode: Offers coding challenges to practice Python and other
programming languages.

2. HackerRank: Provides coding challenges and exercises for
Python.

3. Exercism: Focuses onimproving coding skills through mentoring
and community collaboration.

Community and Forums:

1. Stack Overflow: An active community to ask and answer
programming questions related to Python.

2. Reddit (r/learnpython, r/python): Subreddits where Python
enthusiasts share resources and help each other.

Miscellaneous:

1. GitHub Repositories: Explore Python projects on GitHub to
learn from others' code and contribute.

2. PyPI (Python Package Index): Repository for Python libraries -
explore and use various Python packages.

3. YouTube Channels: Channels like Corey Schafer, Sentdex, and
freeCodeCamp.org offer Python tutorials and guides.

128 | Python: Building Skills for Software Development

Chapter 14 Appendices

Conclusion:

These resources cater to various learning styles and levels of
expertise. Depending on your preferences and goals, exploring a
combination of these resources can significantly enhance your
Python skills and knowledge. Remember that consistent practice and
application are key to mastering Python programming.

Glossary of Terms

Certainly! Here's a glossary of commonly used terms in Python
programming:
A

Algorithm: A sequence of well-defined instructions or steps to solve
a specific problem or perform a task.

B
Boolean: A data type that represents two values: "True or "False’.
C

Class:A blueprint or template for creating objects that define
attributes and behaviors.

Conditional Statements:Statements that execute based on certain
conditions (if', “else’, "elif') in the code.

CSV (Comma-Separated Values): A file format for storing tabular
data where each line represents a row, and columns are separated
by commas.

D

Decorator: A function that modifies the behavior of another function
without directly changing its code.

Dictionary: A data structure in Python that stores key-value pairs
‘{key: value} .
E

Exception: An error that occurs during the execution of a program
due to unforeseen circumstances.

Expression: A combination of values, variables, and operators that
evaluatesto a single value.

F
Function: A block of reusable code that performs a specific task.

Python: Building Skills for Software Development | 129

Chapter 14 Appendices

I

Immutable: An object whose state cannot be modified after it is
created (e.g., tuples and strings).

L

List: A mutable data structure in Python that stores a collection of
items in a specific order "[item1, item2, ...]".

M

Module: A file containing Python code that can be imported and used
in other Python programs.

o

Object: Aninstance of a class that encapsulates data and behavior.
Operator: Symbols or keywords that perform operations on
operands (e.g., +, -, ™, /).

P

Package: A collection of modules that can be imported together.
Polymorphism:The ability of objects to take on different forms or
behaviors based on their context.

Pythonic:Writing code that follows the idiomatic style and best
practices of Python programming.

R

Recursion: A technique where a function calls itself to solve a
problem by breaking it down into smaller subproblems.

Regular Expression: A sequence of characters defining a search
pattern to match patternsin strings.

S

Set: A collection of unique elements “{item1, item2, ...}
String: A sequence of characters enclosed in quotes ™' "
.

Tuple: An immutable ordered collection of elements "(item1, item2,
)
ype Casting/Conversion:Changing the data type of an object to
another data type.

\"

Variable: A name that refers to a value stored in memory.

oy

or

This glossary covers some fundamental terms used in Python
programming. Understanding these terms is essential for learning
and effectively writing Python code.

130 | Python: Building Skills for Software Development

Lab Practice

Python: Building Skills for Software Development 131

Lab Practice

1./*Simple program to display
“"HelloWorld" */
print("Hello, world!")
2. *Maximum of two numbers
in Python */
Define two numbers num1 =
10num2=20
Find the maximum of the
two numbers
maximum = max(num1, num2)
Display the maximum
print("The maximum number
is:", maximum)
3./*Python Program for
factorial of anumber*/
def factorial_iterative(n):
factorial =1
ifn<O:
return "Factorial does
not exist for negative numbers"
elifn==0:
return 1
else:
foriinrange(1,n+1):
factorial *=i
return factorial
Input the number
number = int(input("Enter a
number: "))
result=factorial_iterative(numb
er)
print("Factorial of", number,
"is:", result)
4. /*Python Program for
factorial of a number using
recursive*/
def factorial_recursive(n):
ifn<O0:
return "Factorial does

not exist for negative numbers"
elifn==0orn==1:
return 1
else:
return n * factorial _
recursive(n-1)
Input the number
number = int(input("Enter a
number: "))
result=factorial_recursive(num
ber)
print("Factorial of", number,
"is:", result)
5. /*Python Program for
factorial of a number using
recursive*/
def simple_interest(principal,
rate, time):
Simple interest formula: Sl =
#P*R*T)/100
interest = (principal * rate * time)
/100
return interest
Input principal amount, rate
of interest, and time period
principal_amount=float(input("
Enter the principal amount: "))
interest_rate=float(input("Enter
the interest rate: "))
time_period=float(input("Enter
the time period (in years): "))
Calculate the simple
interest
simple_interest_amount=simpl
e_interest(principal_amount,
interest_rate, time_period)
Display the simple interest
print("Simple Interest:",
simple_interest_amount)

132 |

Python: Building Skills for Software Development

Lab Practice

6. /*Python Program for
compound interest*/

def

compound_interest(principal,
rate, time, frequency):

Compound interest formula:
A=P*(1+r/n)*(nt)
amount = principal * (pow((1

+ rate / (frequency * 100)),
(frequency *time)))

interest = amount - principal
return interest

Input principal amount, rate
of interest, time period, and
frequency of compounding
principal_amount=float(input("
Enter the principal amount: "))
interest_rate=float(input("Enter
the interestrate: "))

time_period= float(input("Enter
the time period (inyears): "))
compounding_frequency=int(in
put("Enter the frequency of
compounding per year: "))

Calculate the compound
interest

compound_interest_amount =
compound_interest(principal_
mount, interest_rate,
time_period,

compounding_frequency)

Display the compound
interest

print("Compound Interest:",
compound_interest_amount)

7. [*Python Program for
Program to find area of a
circle*/
def
calculate_circle_ara(radius):
Formula to calculate the
areaofacircle:A=n*r"2
pi=3.14159
Approximation of Pi
area=pi* (radius ** 2)
return area
Input radius of the circle
radius = float(input("Enter the
radius of the circle: "))
Calculate the area of the
circle
circle_area=calculate_circle_ar
a(radius)
Display the area of the circle
print(f"The area of the circle with
radius {radius} is: {circle_area}")
8. /*Python Program for n-th
Fibonacci number*/
deffibonacci_recursive(n):
ifn<=0:
return “Invalid input.
Please enter a positive integer."
elifn==1:
return0
elifn==2:
return 1
else:
return
fibonacci_recursive(n - 1) +
fibonacci_recursive(n - 2)
Input the value of 'n'
n_value = int(input("Enter the
value of 'n' to find the nth
Fibonacci number: "))

Python: Building Skills for Software Development | 133

Lab Practice

Calculate and display the
nth Fibonacci nhumber using
recursion
result_recursive=fibonacci_rec
ursive(n_value)

print(f"The {n_value}th
Fibonacci number using
recursive approach is:
{result_recursive}")

9. /*Program to print ASCII

Value of a character*/

Input a character

character = input("Enter a

character: ")

Get the ASCII value of the

character

ascii_value = ord(character)

Display the ASCIl value

print(f"The ASCII value of

{character}'is: {ascii_value}")

10. /*Python Program to find

sum of array*/

defsum_of_array(arr):

Initialize the sumto zero
array_sum=0

Iterate through the array and
add each element to the sum
forelementinarr:
array_sum +=element
returnarray_sum
Input the array elements
arr = list(map(int, input("Enter
the elements of the array
separated by space: ").split()))
Calculate the sum of the
array elements
result=sum_of_array(arr)

Display the sum of the array
print("The sum of the array
elementsis:", result)
11. /*Python Program to find
largest elementin an array*/
deffind_largest_element(arr):
if notarr:
return "Array is empty"
Initialize the maximum
element as the first element of
the array
max_element=arr[0]
Iterate through the array to
find the largest element
forelementinarr:
if element >max_element:
max_element=element
return max_element
Input the array elements
arr = list(map(int, input("Enter
the elements of the array
separated by space: ").split()))
Find the largest element in
the array
largest=find_largest_element(a
rr)
Display the largest element
inthe array
print("The largest element in the
array is:", largest)
12./*Python Program for array
rotation*/
def rotate_array(arr, rotation):
length =len(arr)
rotation %= length # Adjust
rotation if it's greater than the
array length

136 |

Python: Building Skills for Software Development

Lab Practice

Rotate the array elements
arr[:] = arr[-rotation:] + arr[:-
rotation]

returnarr
Input the array elements arr
= list(map(int, input("Enter the
elements of the array separated
by space: ").split()))
Input the number of
rotations
num_rotations=int(input("Enter
the number of rotations: "))
Perform array rotation
rotated_array=rotate_array(arr,
num_rotations)
Display the rotated array
print("Array after rotation:",
rotated_array)
13. /*Python Program to Split
the array and add the first part
totheend*/
def split_and_add(arr,
split_position):

if split_position< 0 or
split_position>=len(arr):

return "Invalid split position"

Split the array and add the
first parttotheend

return arr[split_position:] +
arr[:split_position]
Input the array elements
arr = list(map(int, input("Enter
the elements of the array
separated by space: ").split()))
Input the split position
split_position = int(input("Enter
the split position: "))
Perform splitting and
adding the first part to the end

result_array-=
split_and_add(arr,
split_position)
Display the resulting array
print("Array after splitting and
adding the first part to the end:",
result_array)
14./*Python Program to check
if given array is Monotonic*/
defis_monotonic(arr):
increasing = decreasing =
True
Check for non-increasing
foriinrange(1, len(arr)):
ifarr[i] >arr[i- 1]:
decreasing = False
break
Check for non-decreasing
foriinrange(1, len(arr)):
if arr[i] <arrfi- 1]:
increasing = False
break
If either increasing or
decreasing is True, array is
monotonic
return increasing or
decreasing
Input the array elements
arr = list(map(int, input("Enter
the elements of the array
separated by space: ").split()))
Check if the array is
monotonic
ifis_monotonic(arr):
print("The array is
monotonic")
else:
print("The array is not
monotonic")

Python: Building Skills for Software Development

| 135

Lab Practice

15. /*Python program to
interchange first and last
elementsinalist*/
definterchange_first_last(Ist):

if len(Ist) < 2:

return "List should have
at least two elements for
interchange"

Swap the first and last
elements using tuple
unpacking
Ist[0], Ist[-1] =Ist[-1], Ist[O]

return Ist
Input the list elements
input_list = list(map(int,
input("Enter the elements of the
list separated by space:
")-split()))

Interchange the first and last
elementsinthelist
result_list=interchange_first_la
st(input_list[:])

Display the list after
interchange

print("List after interchanging
first and last elements:",
result_list)

16. /*Python program to swap
two elementsin alist*/

def swap_elements(Ist, idx1,
idx2):

if 0 <=idx1 <len(Ist) and 0 <=
idx2 <len(lst):

Swap the elements at idx1
and idx2
Ist[idx1], Ist[idx2] = Ist[idx2],
Ist[idx1]

return Ist
else:

return "Invalid indices.

Please enter valid indices within
thelistrange."
#Input the list elements
input_list = list(map(int,
input("Enter the elements of the
list separated by space:
").split()))
#Input the indices to swap
index1 = int(input("Enter the first
indextoswap: "))
index2 = int(input("Enter the
second index to swap: "))
Swap elements at specified
indices in the list
result_list=swap_elements(inp
ut_list[:], index1, index2)
Display the list after
swapping elements
print(“List after swapping
elements:", result_list)
17. I*Python program to find
second largest number in a
list*/
def second_largest(lst):
iflen(Ist) < 2:
return "List should have
atleasttwo elements"
max_num = max(Ist[0], Ist[1])
second_max = min(Ist[0], Ist[1])
foriinrange(2, len(lst)):
if Ist[i] >max_num:
second_max = max_num
max_num = Ist[i]
eliflstfi]l>second_max and Ist[i]
l=max_num:
second_max = Ist[i]
if second_max == float('-
inf"):
return "There is no second
largest element" else: return
second_max

136 |

Python: Building Skills for Software Development

Lab Practice

Input the list elements
input_list = list(map(int,
input("Enter the elements of the
list separated by space:
")-split()))
Find the second largest
number in the list
result=second_largest(input_lis
t)
Display the second largest
number in the list
print("The second largest
number inthelistis:", result)
18. /*Python program to print
even numbersin alist*/
def print_even_numbers(Ist):

even_numbers = [num for
numinlstif num % 2 ==0]

if len(even_numbers) ==0:

return "No even

numbers foundin the list"

else:

return even_numbers

Input the list elements
input_list = list(map(int,
input("Enter the elements of the
list separated by space:
")-split()))
Print the even numbers from
thelist
result=print_even_numbers(inp
ut_list)
Display the even numbers
ifisinstance(result, list):

print("Even numbers in the
listare:", result)
else:

print(result)
19. /*Remove multiple

elements from a list in
Python*/
Original list
original_list=[1,2, 3,4, 5,6, 7,
8,9,10]
Elements to remove (e.g.,
removing elements from
index2to5)
start_index=2
end_index =6 # Exclude the last
index you want to remove
Remove elements using
slicing
updated_list=original_list[:start
_index]+original_listfend_index
]
print("Updated list after
removing elements:",
updated_list)
20. /*Program to print
duplicates from a list of
integers*/
def find_duplicates(lst):
frequency = {}
duplicates =[]
fornuminlst:
if numin frequency:
frequency[num] +=1
else:
frequency[num] =1
for key, value in
frequency.items():
ifvalue>1:
duplicates.append(key)
return duplicates
Example list with duplicates
input_list=[1,2,2, 3,4,4,5, 5,
6,7,8,9,9,9]

Python: Building Skills for Software Development

| 137

Lab Practice

Find and print duplicates in
thelist
duplicate_values=find_duplicat
es(input_list)
if duplicate_values:
print("Duplicate values in the
listare:", duplicate_values)
else:
print("No duplicates found in
the list")

21. /*Python program to find
Cumulative sum of a list*/
def cumulative_sum(lst):
cumulative_result =[]

cumulative=0

fornuminst:

cumulative +=num

cumulative_result.append
(cumulative)

return cumulative_result
Example list of integers
input_list=[1,2, 3,4, 5]
Calculate and print the
cumulative sum of the list
result=cumulative_sum(input_li
st)
print("Cumulative sum of the
list:", result)
22./*Sort the values of first list
using second list*/
def sort_list_by_second_list
(list1, list2):

combined= list(zip(list2,
list1))
combined.sort()

sorted_list1 = [element[1] for
elementin combined]

return sorted_list1

Example lists
first_list=[3,1,5,4, 2]
second_list=[9,7,2,8, 3]
Sort the values of the first
listusing the second list
sorted_values=sort_list_by_se
cond_list(first_list, second_list)
print("Sorted values of the first
list using the second list:",
sorted_values)
23. [*Python program to add
two Matrices*/
def add_matrices(matrix1,
matrix2):
if len(matrix1) !=
len(matrix2) or len(matrix1[0])
I=len(matrix2[0]):
return "Matrices should have
the same dimensions for
addition"
result_matrix={]
foriinrange(len(matrix1)):
row =]
forjin range(len(
matrix1[0])):
row.append(matrix1[i][j] +
matrix2[i][j])
result_matrix.append(row)
return result_matrix
Example matrices
matrix1 =]
[1,2,3],
[4,5,6],
[7,8,9]
]
matrix2 =
[9,8,7],
(6,5, 4],
[3,2,1]
]

138 |

Python: Building Skills for Software Development

Lab Practice

Add the two matrices
result = add_matrices(matrix1,
matrix2)
Display the result of matrix
addition
if isinstance(result, str):
print(result)
else:
print("Resultant Matrix after
addition:")
forrow inresult:
print(row)
24. /*Python program to
multiply two matrices*/
def multiply_matrices(matrix1,
matrix2):
rows_m1 =len(matrix1)
cols_m1 =len(matrix1[0])
rows_m2 = len(matrix2)
cols_m2 =len(matrix2[0])

if cols_m1 !=rows_m2:
return "Cannot multiply
matrices. Number of columns in
the first matrix should be equal
to the number of rows in the
second matrix."
result_matrix = [[0 for _ in
range(cols_m2)] for _ in
range(rows_m1)]
foriinrange(rows_m1):
forjin range(cols_m2):
forkinrange(cols_m1):
result_matrix[i][j] += matrix1[i][K]
*matrix2[K][j]
return result_matrix
Example matrices
matrix1 =[
[1,2,3],

[4,5,6],
[7,8,9]
]
matrix2 =
[9,8,7],
[6,5,4],
[3,2,1]
]
Multiply the two matrices
result=multiply_matrices(matrix
1, matrix2)
Display the result of matrix
multiplication
ifisinstance(result, str):
print(result)
else:
print("Resultant Matrix after
multiplication:")
forrow in result:
print(row)
25. [*Transpose a matrix in
Single linein Python*/
Example matrix
matrix =[
[1,2,3],
[4,5,6],
[7,8,9]
]
Transpose the matrix in a
single line using list
comprehension and zip
transpose_matrix = [list(row) for
row in zip(*matrix)]
Display the transposed
matrix
forrow intranspose_matrix:
print(row)

Python: Building Skills for Software Development

| 130

Lab Practice

* zip(*matrix) transposes
the matrix by unpacking
matrix into arguments for
zip(). It effectively
rearranges rows into
columns and columns into
rows.

e list(row) for row in
zip(*matrix) uses list
comprehension to convert
the resulting transposed
tuplesintolists.

26. /* Python program to

check if a string is palindrome

or not*/

defis_palindrome(s):

Removing spaces and

converting to lowercase for

case-insensitive comparison
s=s.replace("","").lower()

Compare the original string

withitsreverse
returns==s[::-1]

Input from the user

user_input = input("Enter a

string: ")

ifis_palindrome(user_input):
print("The string is a
palindrome.")

else:
print("The string is not a

palindrome.")

27. I* Python program to

check if a Substring is

Presentina Given String*/

defis_substr_present(main_str,

substr):

Check if the substring is
present in the main string
return substrin main_str
Input from the user
main_string = input("Enter the
main string: ")
substring = input("Enter the
substring to check: ")
ifis_substr_present(main_str,
substr):

print(f"The substring
{substring}' is present in the
main string.")
else:

print(f"The substring
{substring}' is not present in the
main string.")

28. /* Python program to find
the frequency of each word in
agiven string*/

def word_frequency(string):

Removing punctuation and
converting to lowercase

string = ".join(char.lower() if
char.isalnum() or char.isspace()
else''forcharin string)

Split the string into
words

words = string.split()

Count the frequency of each
word using a dictionary
frequency ={}

forword in words:

if word in frequency:
frequency[word] += 1
else:
frequency[word] =1
return frequency

120 |

Python: Building Skills for Software Development

Lab Practice

Input from the user
input_string = input("Enter a
string: ")

Get the word frequency

frequency_dict =

word_frequency(input_string)

Print the word frequency

print("Word Frequency:")

for word, count in

frequency_dict.items():
print(f"{word}: {count}")

29. /* Python program to print

even length words in a string*/

def
print_even_length_words(strin

9):

Removing punctuation and

converting to lowercase
string = ".join(char.lower() if

char.isalnum() or char.isspace()
else''forcharin string)

Split the string into words
words = string.split()

Print even-length words
print("Even-length words:")
forword in words:

iflen(word) % 2==0:
print(word)

Input from the user

input_string = input("Enter a

string: ")

Print even-length words in

the string

print_even_length_words(input

_string)

30. /* Python program to

accept the strings which

contains all vowels*/

def_all_vowels(s):

Convert the string to
lowercase for case-
insensitive comparison

s=s.lower()

Check if the string contains
all vowels

return all(vowel in s for vowel
in'aeiou’)

Input from the user

input_string = input("Enter a

string: ")

Check if the string contains

all vowels

if _all_vowels(input_string):
print("The string contains all

vowels.")

else:

print("The string does not
contain all vowels.")

31./* Program to remove a key
fromdictionary*/
def remove_key(dictionary,
key_to_remove):

Use pop() to remove the
specified key

dictionary.pop(key_to_remo
ve, None)

Example usage:
my_dict={'a":1,'b" 2,'c": 3}

Remove key 'b’
remove_key(my_dict, 'b")

Print the updated dictionary
print(my_dict)

32. /* Python program
Merging two Dictionaries*/
def merge_dicts(dict1, dict2):

Python: Building Skills for Software Development

| 141

Lab Practice

Create a copy of dict1 to
avoid modifying it directly
merged_dict =dict1.copy()

Update the copy with the

contents of dict2

merged_dict.update(dict2)
return merged_dict

Example usage:

dict1={a"1,'b" 2}

dict2={'b" 3,'c": 4}

Merge the dictionaries
result_dict = merge_dicts(dict1,
dict2)

Print the merged dictionary
print(result_dict)

33. /* Python program to
Convert key-values list to flat
dictionary*/

def list_to_dict(key_value_list):
Initialize an empty
dictionary

flat_dict={}

Iterate through the list in
pairs

for key,
key_value_list:
Add key-value pairs to the
dictionary

flat_dict[key] = value

return flat_dict
Example usage:
key_value_list = [('a', 1), ('b', 2),
(‘c',3)]

Convert the list to a flat
dictionary

result_dict =
list_to_dict(key_value_list)

value in

Print the resulting
dictionary
print(result_dict)
34. /* Python program
Remove all duplicates words
from a given sentence*/
d e f
remove_duplicates(sentence):
Split the sentence into
words
words = sentence.split()
Use a set to store unique
words
unique_words = set()
List to store the result
result_words =[]
Iterate through the words
forword in words:
Check if the word is not
inthe set
if word not in unique_words:
Add the word to the set and
result list
unique_words.add(word)
result_words.append(word)
Join the result list into
asentence
result_sentence=".join(result_
words)
return result_sentence
Example usage:
input_sentence = "This is a
sample sentence with some
duplicate words. This is a
sample sentence."
Print the merged dictionary
print(result_dict)

142 |

Python: Building Skills for Software Development

Lab Practice

33. /* Python program to
Convert key-values list to flat
dictionary*/
deflist_to_dict(key_value_list):
Initialize an empty
dictionary

flat_dict={}

Iterate through the list in
pairs

for key, value in

key_value_list:
Add key-value pairs to the
dictionary
flat_dict[key] = value

return flat_dict
Example usage:
key_value_list = [('a', 1), ('b', 2),
(‘c', 3)]
Convert the list to a flat
dictionary
result_dict =
list_to_dict(key_value_list)
Print the resulting
dictionary
print(result_dict)
34. /* Python program
Remove all duplicates words
from a given sentence*/
def
remove_duplicates(sentence):

Split the sentence into
words

words = sentence.split()

Use a set to store unique
words

unique_words = set()
List to store the result
result_words =[]

Iterate through the words
forword in words:

Check if the word is
notin the set

if word not in
unique_words:
Add the word to the set and
result list
unique_words.add(word)
result_words.append(word)

Join the result list into a
sentence
result_sentence=".join(result_
words)

return result_sentence
Example usage:
input_sentence = "This is a
sample sentence with some
duplicate words. This is a
sample sentence."

Remove duplicates
result_sentence =
remove_duplicates(input_sente
nce)

Printthe result
print(result_sentence)

35. /* Python program to
convert number into words */
First, you need to install the
inflect library if you haven't
already:

pip install inflect

importinflect
def
number_to_words(number):
p =inflect.engine()
return
p.number_to_words(number)

Python: Building Skills for Software Development | 143

Lab Practice

Example usage:
input_number =123456

Convert the number to
words
result=number_to_words(input
_number)

Print the result

print(result)

36./* Python program Convert
a list of Tuples into
Dictionary*/
def
list_of_tuples_to_dict(tuple_list
):
Use dict() constructor to
convert the list of tuples to a
dictionary
result_dict =dict(tuple_list)
return result_dict
Example usage:
tuple_list = [('a', 1), ('b', 2), ('c',
3)]
Convert the list of tuples to a
dictionary
result_dict =
list_of_tuples_to_dict(tuple_list
)
Print the resulting
dictionary
print(result_dict)

37. I* Python program Least
Frequent Character in String*/
defleast_freq_char(input_str):

Create a dictionary to store
the frequency of each

character
char_frequency ={}
Count the frequency of each
character in the string

forcharininput_str:

if charin char_frequency:

char_frequency[char] += 1

else:
char_frequency[char] =1
Find the least frequent
characterleast_frequent_char=
min(char_frequency,key=char_
frequency.get)
return least_frequent_char
my_string = "hello world"
result =
least_freq_char(my_string)
print(f"The least frequent
characteris: {result}")

38. /* Python program
Maximum frequency
character in String*/

def max_freq_chr(input_str):

Create a dictionary to
store the frequency of each
character

char_frequency ={}

Count the frequency of each
character in the string
forcharininput_str:
if charin char_frequency:
char_frequency[char]+=1
else:
char_frequency[char] =1
Find the character with the
maximum frequency
max_frequency_char =

144 |

Python: Building Skills for Software Development

Lab Practice

max(char_frequency,key=char
_frequency.get)
return max_frequency_char

my_string = "hello world"
result =
max_freq_chr(my_string)
print(f"The character with the
maximum frequency is:
{result}")

39. /* Python program to
check if a string contains any
special character*/

d e f
has_special_chrs(input_str):

Define a set of special
characters
special_characters =
set("! @#$%N&*()
=[5\ .<>21")

Check if the string
contains any special
characters

for char in input_str: if charin
special_characters:

return True

return False

my_string = "Hello! How are
you?"
result = has_special_chrs
(my_string)

if result:

print("The string contains
special characters.")
else:

print("The string does not

contain any special
characters.")

40. /* Python program to
Generating random strings
until a given string is
generated*/

importrandom

import string

def gen_random_string(length):

return
".join(random.choice(string.asc
ii_letters + string.digits) for _ in
range(length))

def gen_until_targ(targ_string):
generated_string=""

attempts=0

while generated_string !=
target_string:
generated_string
gen_random_string(len(target_
string))

attempts +=1

print(f"Attempt {attempts}:
{generated_string}")

print(f"\nTarget string
{target_string}' generated after
{attempts} attempts.")

target_string="Hello123"
gen_until_targ(targ_string)

41. /* Python program to
Check if a given string is
binary string or not*/

Python: Building Skills for Software Development

| 145

Lab Practice

defis_binary_string(input_str):
Check if each character
is either'0'or'1'
forcharininput_str:
if charnotin (‘0','1"):
return False
return True

binary_string="101010101"

result =
is_binary_string(binary_string)

if result:

print("The string is a binary
string.")
else:

print("The string is not a
binary string.")

42. [* Python program to find
uncommon words from two
Strings*/
def find_uncommon(str1, str2):
Tokenize the strings into
words
words_str1 =set(str1.split())
words_str2 = set(str2.split())

Find uncommon words
uncommon_words =
words_str1.symmetric_differen
ce(words_str2)

return uncommon_words
string1 = "This is the first string"

string2 = "This is the second
string with some different

words"
result = find _uncommon
(string1, string2)

print("Uncommon words:",
result)

43. /* Python program to
Check for URL in a String*/
importre
def contains_url(input_str):
Regular expression to
match URLs
url_pattern =
re.compile(r'https?:/AS+|www\.\
S+
Search for the URL pattern
in the input string

match =
re.search(url_pattern,
input_str)

return bool(match)
my_string = "Visit my website at
https://www.example.com for
more information."

if contains_url(my_string):
print("The string contains a
URL.")
else:
print("No URL found in the
string.")

44, [* Python program to find
the sum of all items in a
dictionary*/ def
sum_of_vals(dictionary):

r e t u r n
sum(dictionary.values())

146 |

Python: Building Skills for Software Development

Lab Practice

my_dict = {'a": 10, 'b": 20, 'c": 30,
'd": 40}
result=sum_of_val(my_dict)
print(f"The sum of all values in
the dictionary is: {result}")

45. /* Python program to sort
list of dictionaries by values—
Using lambda function*/
List of dictionaries
my_list_of_dicts =]

{'name": 'lakshay', ‘age": 30,
'score': 85},

{'name': 'mohan’, 'age": 25,
'score': 92},

{'name": 'palak’, 'age': 35,
'score': 78}
]
Sort the list of dictionaries
by the 'score' value using
lambda function
sorted_1list =
sorted(my_list_of_dicts,
key=lambda x: x['score'])
Print the sorted list
foritemin sorted_list:

print(item)

46. /* Python program to
Append Dictionary Keys and
Valuesin dictionary*/
def apd_keys_vals(dict1, dict2):
result_dict =dict1.copy()

for key, value in
dict2.items():
result_dict[key] = value
return result_dict
Example dictionaries
dict1={'a":1,'b" 2}

dict2={'c": 3,'d": 4}

Append keys and values
from dict2 to dict1

result = apd_keys_vals (dict1,
dict2)

print("Dictionary 1:", dict1)
print("Dictionary 2:", dict2)
print("Dictionary:", result)

47. I* Python program to
Handling missing keys in
Python dictionaries*/
my_dict={'a":1,'b" 2}
key='c'
if key in my_dict:

value =my_dict[key]
else:

value ='Key not found'

print(value)

48. /* Python dictionary with
keys having multiple inputs*/
Using tuples as keys
multi_input_dict={('a’, 1):
'Value1', ('b', 2): 'Value2', ('c', 3):
‘Value3'}

Accessing values using
tuples as keys
print(multi_input_dict[('a’, 1)]) #
Output:Value1
print(multi_input_dict[('b’, 2)]) #
Output:Value2

Using lists as keys
multi_input_dict_list = {['x', 10]:
‘ValueX', ['y', 20]: 'ValueY', ['Z,
30]: 'ValueZ'}

Python: Building Skills for Software Development

| 147

Lab Practice

Note: Lists cannot be used
as dictionary keys because
they are mutable

You might get an error or
unexpected behavior if you
trytousealistas akey

But you can convert the lists
to tuples before using them
as keys

list_key =tuple(['x', 10])
print(multi_input_dict_list[list_k
ey]) # Output: ValueX

49. /* Check if binary
representations of two
numbers are anagram*/
To check if the binary
representations of two numbers
are anagrams, you can follow
these steps:

1. Convert both numbers

to binary strings.
2. Compare the binary
strings for equality.

defanagrams(num1, num2):
Convert numbers to binary
strings

binary_str1 =bin(num1)[2:]

binary_str2 = bin(num2)[2:]
Check if the sorted binary
strings are the same

return sorted(binary_str1)
== sorted(binary_str2)
numi=7
num2=4
ifanagrams(num1, num2):

print(f"The binary repre-
sentations of {num1} and
{num2} are anagrams.")

else:

print(f"The binary repre-
sentations of {num1} and
{num2} are notanagrams.")

50. /* Counting the
frequencies in a list using
dictionary in Python*/
def
count_frequencies(input_list):
Initialize an empty
dictionary to store
frequencies
frequency_dict={}
Iterate through the list
forelementininput_list:

If the element is
already a key in the dictionary,
increment its count
if elementin frequency_dict:
frequency_dict[element] +=1

If the element is not a key,
add it to the dictionary with a
countof 1
else:
frequency_dict[element] = 1
return frequency_dict
my_list=[1,2,2,3, 3, 3, 4, 4, 4,
4]
result =
count_frequencies(my_list)
print("List:", my_list)
print("Frequencies:", result)

50. /* Python program to Find
the size of aTuple*/
import sys
deftuple_size(input):
return sys.getsizeof(input)

148 |

Python: Building Skills for Software Development

Lab Practice

my_tuple = (1, 2, 3, 'a', 'b', 'c,
True, False, None)

Get the size of the tuple

size =tuple_size(my_tuple)
print("Tuple:", my_tuple)
print("Size of the tuple:", size,
"bytes")

51./* Python program to Find

Maximum and Minimum K

elements inTuple*/

import heapq def

max_min_k_elements(in, k):

Finding K largest elements
max= heapqg.nlargest(k, in)

Finding K smallest elements
min =heapg.nsmallest(k, in)
return max, min

my_tuple=(3,1,4,1,5,9, 2, 6,
5,3,5)

Specify the value of K

k=3

Get the K largest and K
smallest elements
max_elements, min_elements=
max_min_k_elements(my_tupl
e, k)

print("Tuple:", my_tuple)
print(f"{k} Largest Elements:",
max_elements)

print(f"{k} Smallest Elements:",
min_elements)

52. /* Python program
RemoveTuples of Length K*/
def rm_tuples_of_length_k(list,
k):

return [tup for tup in tuple_list
iflen(tup) !=K]
list_of_tuples = [(1, 2), (‘a', 'b’,
ICI)’ (3’ 4’ 5)’ (IXI’ Iyl)’ ('p" Iql’ Irl)]
Specify the length K
k=3
Remove tuples of length K

result =
rm_tuples_of_length_k(list_of _t
uples, k)

print("Original List of Tuples:",
list_of tuples)

print(f"Tuples with length {k}
removed:", result)

53. /* Create a list of tuples

from given list having number

and its cube in each tuple*/

deftuples_cube(input_list):

Use a list comprehension to

create tuples with number

and its cube

tuples_list = [(num, num ** 3) for

num ininput_list]
returntuples_list

original_list=[1, 2, 3, 4, 5]

Create a list of tuples with

each tuple containing a

number and its cube

result=tuples_cube(original_list

)

print("Original List:",

original_list)

print("List of Tuples (Number,

Cube):", result)

Python: Building Skills for Software Development

| 140

Lab Practice

54. /* Python program Join
Tuples if similar initial
element*/
def
join_tuples_with_similar_initial
_element(tuple_list):
Use a dictionary to group
tuples by their initial elements
grouped_tuples ={}

fortupintuple_list:
initial_element = tup[0]

if initial_element in
grouped_tuples:
grouped_tuples[initial_element]
.append(tup)

else:
grouped_tuples[initial_element]
= [tup]

Concatenate tuples with
similar initial elements
result_list=[tuple(sum(grouped
_tuples[key], ())) for key in
grouped_tuples]

return result_list

Example usage
original_list=[(1,'a"), (2, 'b'), (1,
€, (3,'d), (2,¢), (4,'1)]

Join tuples with similar initial
elements

result_1list =
join_tuples_with_similar_initial
_element(original_list)

print("Original List of Tuples:",
original_list)

print("Joined Tuples with
Similar Initial Elements:",
result_list)

55. /* Python program Extract
digits fromTuple list*/
def extract_digits(tuple_list):

Use list comprehension
to extract digits from each
tuple
digit_list = [".join(filter(str.isdigit,
str(item))) for tup in tuple_list for
itemintup]

return digit_list
tuple_list=[(1, 'abc', 23), ('x', 45,
'yz'), (67,'pqr', '89)]
Extract digits from the tuple
list
result= extract_digits(tuple_list)
print("Original List of Tuples:",
tuple_list)
print("Extracted Digits:", result)
56. /* Python Program for
Binary Search */
def binary_search(arr, low,
high, target):
if low <= high:
mid = (low + high) /2
Check if target is
present atthe middle
if arrfmid] ==target:
return mid
If target is smaller, search in
the left half
elifarr[mid] > target:
return binary_search(arr,
low, mid - 1, target)

150 |

Python: Building Skills for Software Development

Lab Practice

If target is larger, search in
theright half
else:
rre t u r n
binary_search(arr, mid + 1,
high, target)

else:
Elementis not present in the
array

return -1

arr=[2,3,4,10, 40]
target=10
result = binary_search(arr, 0,
len(arr) - 1, target)
if result!=-1:

print(f"Element {target} is
present atindex {result}")
else:

print(f"Element {target} is not
presentinthe array")

57. I* Python Program for
Linear Search*/
deflinear_search(arr, target):
foriinrange(len(arr)):
if arr[i] ==target:
return i# Return the
index if the target is found

return -1 # Return -1 if the
targetis not found
arr=[2,5, 8,12, 16, 23, 38, 42]
target=16
result = linear_search(arr,
target)

if result!=-1:
print(f"Element {target} is

present atindex {result}")
else:

print(f"Element {target} is not
presentinthe array")

58. /* Python Program for
Insertion Sort*/
definsertion_sort(arr):
foriinrange(1, len(arr)):
key =arrli]
j=i-1
Move elements of arr[0..i-1]
that are greater than key to
one position ahead of their
current position
while j >= 0 and key <arr[j]:
arrfj+ 1] =arr[j]
j-=1

arrfj+ 1] =key

arr=[12,11,13,5, 6]
print("Original Array:", arr)
insertion_sort(arr)
print("Sorted Array:", arr)

59. /* Python program to get
Current Date andTime*/

from datetime import datetime

Get the currenttime
current_datetime =
datetime.now()

Format and print the current
time
formatted_datetime =
current_datetime.strftime("%Y-
%mM-%d %H:%M:%S")
print("Formatted Date Time:",
formatted_datetime)

Python: Building Skills for Software Development

| 151

Lab Practice

60. /* Python program to find
difference between current
time and given time*/

from datetime import datetime,
timedelta

Given time (replace with
your own time)

given_time_str = "2024-01-27
12:30:00"

Convert the given time
string to a datetime object
given_time =
datetime.strptime(given_time_s
tr, "%Y-%m-%d %H:%M:%S")

Getthe currenttime
current_time = datetime.now()

Calculate the difference
between the current time and
the giventime

time_difference = current_time -
given_time

print("Given Time:", given_time)
print("Current Time:",
current_time)

print("Time Difference:",
time_difference)

61./*How to convert
timestamp string to datetime
objectin Python?*/

from datetime import datetime

Example timestamp string
timestamp_str = "2024-01-27
15:30:00"

Define the format of the
timestamp string
timestamp_format ="%Y-%m-

%d %H:%M:%S"

Convert the timestamp
string to a datetime object
datetime_object =
datetime.strptime(timestamp_s
tr, timestamp_format)

print("Timestamp String:",
timestamp_str)
print("Datetime Object:",
datetime_object)

62./*Find number of times
every day occurs in aYear*/
import calendar
def count_days_in_year(year):
Initialize a dictionary to
store the count of each day of
the week
day_counts ={
‘Monday": 0,
‘Tuesday": 0,
‘Wednesday': 0,
‘Thursday": 0,
'Friday": 0,
'Saturday": 0,
‘Sunday': 0
}

Iterate through each
month of the year

formonthinrange(1, 13):

Get the matrix
representing the month's
calendar
month_matrix =
calendar.monthcalendar(year,
month)

152 |

Python: Building Skills for Software Development

Lab Practice

lIterate through each
week of the month

for week in month_matrix:

Iterate through each day
of the week

for day, day_number in
enumerate(week):
Check if the day is in the
current month

if day_number!=0:

Increment the
count for the corresponding
day of the week
day_name =
calendar.day_name[day]
day_counts[day_name] +=1

return day_counts

year =2024
result =
count_days_in_year(year)

Print the result

forday, countin result.items():
print(f"{day}: {count}

occurrences")

63./*Python Program to

Check if String Contain Only

Defined Characters using

Regex*/

importre

defonly_defined_chars(input,d

efined_chars):

Define the regex pattern
pattern =

f'A[{re.escape(defined_chars)}]

+$'

Use re.match to check if the
entire string matches the
pattern

match = re.match(pattern,
input)

return match is not None

defined_characters ='abcde'
test_string1 ="abc'
test_string2 ='abcf123'

resulti =
only_defined_chars(test_string
1, defined_characters)
result?2 =
only_defined_chars(test_string
2, defined_characters)

print(f"Test String 1:
{test_string1} - Contains only
defined characters: {result1}")
print(f"Test String 2:
{test_string2} - Contains only
defined characters: {result2}")

64./*Python program to Count
Uppercase, Lowercase,
special
character and numeric values
using Regex*/
importre
def
count_characters(input_string):
Define regex patterns for
different character types
uppercase_pattern
re.compile(r'[A-Z]')
lowercase_pattern
re.compile(r'[a-z]')

Python: Building Skills for Software Development

| 153

Lab Practice

special_character_pattern
re.compile(r'[*A-Za-z0-9])
numeric_pattern
re.compile(r'[0-9])

Count occurrences
using regex patterns
uppercase_count =
len(re.findall(uppercase_patter
n, input_string))
lowercase_count =
len(re.findall(lowercase_patter
n, input_string))
special_character_count =
len(re.findall(special_characte_
pattern, input_string))
numeric_count =
len(re.findall(numeric_pattern,
input_string))

return uppercase_count,
lowercase_count,
special_character_count,
numeric_count

test_string ="Hello123! How are
you today?"

uppercase, lowercase,
special_character, numeric =
count_characters(test_string)

print("Uppercase Count:",
uppercase)
print("Lowercase Count:",
lowercase)

print("Special Character
Count:", special_character)
print("Numeric Count:",
numeric)

65./*Python Program to
Check if email address valid
or not*/
importre

defis_valid_email(email):

Define the email pattern
using aregular expression
email_pattern
re.compile(r'Ala-zA-Z0-9_.+-
]+ @[a-zA-Z0-9-]+\.[a-zA-Z0-9-
J+8)

Use re.match to check if
the entire email matches the
pattern

match =
re.match(email_pattern, email)

return match is not None

test_emaili =
"user@example.com"
test_email2 ="invalid-email"

resulti =
is_valid_email(test_email1)
result2 =
is_valid_email(test_email2)

print(f"Email '{test_email1}' is
valid: {result1}")
print(f"Email '{test_email2}' is
valid: {result2}")

66./*Categorize Password as
Strong or Weak using Regex
in Python*/

154 |

Python: Building Skills for Software Development

Lab Practice

importre
def categorize_pwd(password):
Define regex patterns for
different character types
uppercase_pattern =
re.compile(r'[A-Z])
lowercase_pattern
re.compile(r'[a-z]')
numeric_pattern
re.compile(r'[0-9])
special_character_pattern =
re.compile(r'[! @ #$%"&*()_+{}\[\
I5<>,.2~\V-])

Check if the password
meets the criteria for a strong
password
has_uppercase =
bool(re.search(uppercase_patt
ern, password))
has_lowercase-=
bool(re.search(lowercase_patt
ern, password))
has_numeric =
bool(re.search(numeric_patter
n, password))
has_special_character=
bool(re.search(special_charact
er_pattern, password))

Check if the password is
strong

is_strong = has_uppercase and
has_lowercase and
has_numeric and
has_special_character

return "Strong" if is_strong
else "Weak"

pwd1 = "StrongPassword123!"
pwd2 ="weakpassword"

resulti =
categorize_pwd(pwd1)
result2 =

categorize_pwd(pwd2)

print(f"Password
‘{test_password1}' is
categorized as: {result1}")
print(f"Password
‘{test_password2}' is
categorized as: {result2}")

67./*Python program to read
file word by word*/
def read_file(file_path):
try:
with open(file_path, 'r') as
file:
Iterate through each line in
thefile
forlineinfile:
Split the line into words
words = line.split()
Iterate through each word in
theline
forword in words:
print(word)
except FileNotFoundError:
print(f"File '{file_path}'
not found.")
except Exception as e:
print(f"An error
occurred: {e}")

file_path ='example.txt'

Python: Building Skills for Software Development

| 155

Lab Practice

Replace with the path to
your file
read_file(file_path)

68./*Python Program Get
number of characters, words,
spaces and lines in a file*/
def get_file_statistics(file_path):
try:
with open(file_path, 'r')
asfile:
Read the entire content of
thefile
content =file.read()
Count the number of
characters, words, spaces,
andlines
num_characters = len(content)
num_words =
len(content.split())
num_spaces = content.count('")
num_lines = content.count(\n')
+1
Adding 1 to count the last
line
print(f"Number of
characters: {num_characters}")
print(f"Number of words:
{num_words}")
print(f"Number of
spaces: {num_spaces}")
print(f"Number of lines:
{num_lines}")

except FileNotFoundError:
print(f"File ‘{file_path}'
not found.")
except Exceptionase:
print(f"An error occurred:

{e}")

file_path ='example.ixt'

Replace with the path to
your file
get_file_statistics(file_path)

69./*Python Program to
Eliminate repeated lines from
afile*/
def rmv_dup_lines(input_file,
output_file):
try:
with open(input_file, 'r")
as input_file, open(output_file,
'w') as output_file:
unique_lines_set =set()
Iterate through each line
inthe inputfile
forline ininput_file:
Check if the line is not
already in the set
if line
unique_lines_set:
Write the line to the output
file
output_file.write(line)
Add the line to the set
unique_lines_set.add(line)
except FileNotFoundError:
print(f"File '{input_file}'
not found.")
except Exceptionase:
print(f"An error
occurred: {e}")
input_file_path ="input.txt'
Replace with the path to
your inputfile
output_file_path = 'output.txt'

not in

156 |

Python: Building Skills for Software Development

Lab Practice

Replace with the desired
output file path
rmv_dup_lines(input_file_path,
output_file_path)

70./*Python Program to read
List of Dictionaries from File*/
importjson
def
read_list_of_dicts_from_file(file
_path):
try:
with open(file_path, 'r') as
file:
Load the JSON data
from thefile
data =json.load(file)
Print the list of
dictionaries
print("List of
Dictionaries:")
foritemin data:
print(item)
except FileNotFoundError:
print(f"File ‘{file_path}'
not found.")
e X c e p t
json.JSONDecodeErrorase:
print(f"Error decoding JSON
in {file_path}': {e}")
except Exception as e:
print(f"An error
occurred: {e}")
file_path ='data.json'
Replace with the path to

your JSON file
read_list_of_dicts_from_file(file
_path)

Note :- save the file

"data.json"
[

{"name": "lakshay", "age":
14, "city": "nainital"},

{"name": "palak”, "age": 11,
"city": "haldwani"},

{"name": "meena", "age": 38,
"city": "kashipur"}
]

71./*Python Program to
merge two files into a third
file*/
def merge_files(file1_path,
file2_path, output_file_path):
try:

with open(file1_path, 't
as file1, open(file2_path, 'r') as
file2, open(output_file_path, 'w')
as output_file:

Read content from the
first file and write to the
outputfile
output_file.write(file1.read())

Add a newline character to
separate the content of the
two files
output_file.write(\n")
Read content from the
second file and write to the
outputfile
output_file.write(file2.read())
print(f"Merged files
{file1_path} and '{file2_path}'
into '{output_file_path}")

except FileNotFoundError:
print(f"One or more files
not found.")

Python: Building Skills for Software Development | 157

Lab Practice

except Exceptionase:
print(f"An error
occurred: {e}")

file1_path ='file1.txt'

Replace with the path to
your first input file

file2_path = file2.txt'

Replace with the path to
your second input file
output_file_path ='merged.txt’

Replace with the desired
output file path
merge_files(file1_path,
file2_path, output_file_path)

72. /*Create First GUI
Application using Python-
Tkinter*/

import tkinter as tk
defon_button_click():
label.config(text="Hello,
Tkinter!")

Create the main window
window = tk.Tk()
window.title("My First GUI App")
Set geometry
(widthxheight)
window.geometry(‘350x200")

Create a label

label = tk.Label(window,
text="Welcome to Tkinter!")
label.pack(pady=10)

Create a button

button = tk.Button(window,
text="Click Me",
command=on_button_click)
button.pack(pady=10)

Start the Tkinter event loop

window.mainloop()

73. /*Age Calculator using
Tkinter*/
import tkinter as tk
from datetime import datetime
def calculate_age():
birthdate_str =
entry_birthdate.get()

try:
Convert the input birthdate
string to a datetime object

birthdate =
datetime.strptime(birthdate_str,
"%Y-%m-%d")
Get the current date
current_date = datetime.now()
Calculate the age

age = current_date.year -
birthdate.year -
((current_date.month,
current_date.day) <
(birthdate.month,
birthdate.day))
Display the result
result_label.config(text=f"Your
ageis: {age} years")

except ValueError:
result_label.config(text="Invalid
date format. Please use YYYY-
MM-DD.")
Create the main window
window =tk.Tk()
window.title("Age Calculator")
Set geometry
(widthxheight)
window.geometry(‘350x200")
Create and place widgets in
the window

158 |

Python: Building Skills for Software Development

Lab Practice

label_birthdate =
tk.Label(window, text="Enter
your birthdate (YYYY-MM-
DD):")
label_birthdate.pack(pady=10)
entry_birthdate =
tk.Entry(window)
entry_birthdate.pack(pady=10)
button_calculate =
tk.Button(window,
text="Calculate Age",
command=calculate_age)
button_calculate.pack(pady=1
0)

result_label = tk.Label(window,
text="")
result_label.pack(pady=10)

Start the Tkinter event loop
window.mainloop()

74. [*Create a digital clock
using Tkinter*/
import tkinter as tk
fromtime import strftime
defupdate_time():
current_time =
stritime('%H:%M:%S %p')
label.config(text=current_ti
me) label.after(1000,
update_time) # Update every
1000 milliseconds (1 second)
Create the main window
window =tk.Tk()
window.title("Digital Clock")
Create a label to display the
time
label = tk.Label(window,
font=('calibri', 40, 'bold'),
background='black’,

foreground='white')
label.pack(anchor='center’)

Call the update_time
function to initialize the label
update_time()

Start the Tkinter event loop
window.mainloop()

75./*Create Simple
registration form using
pythonTkinter*/
import tkinter as tk
from tkinter import messagebox
def register_user():
Retrieve values from the
form
username
entry_username.get()
password
entry_password.get()
gender =var_gender.get()
hobbies =[var_hobby1.get(),
var_hobby2.get(),
var_hobby3.get()]
country =
listbox_country.get(listbox_cou
ntry.curselection())
address =
text_address.get("1.0", tk.END
Display the registered user
information
message = f"Registered
User:\nUsername:
{username}\nPassword:
{password}\nGender:
{gender}\nHobbies:
{hobbies}\nCountry:
{country}\nAddress: {address}"

Python: Building Skills for Software Development | 159

Lab Practice

messagebox.showinfo("Registr

ation Successful", message)

Optionally, you can clear the

form after registration

clear_form()

def clear_form():
entry_username.delete(0,

tk.END)

entry_password.delete(0,
tk.END)
var_gender.set("")

Clear radio button selection
var_hobby1.set(0)

Clear checkbox selection
var_hobby2.set(0)
var_hobby3.set(0)

listbox_country.selection_clear

(0,tk.END)

Clear listbox selection
text_address.delete("1.0",
tk.END)

Create the main window
window =tk.Tk()
window.title("Registration
Form")

Create and place widgets in
the window
label_username =
tk.Label(window,
text="Username:")

label_username.grid(row=0,
column=0, padx=10, pady=5,
sticky="e")

entry_username =
tk.Entry(window)

entry_username.grid(row=0,
column=1, padx=10, pady=5)

label_password
tk.Label(window,
text="Password:")

label_password.grid(row=1,
column=0, padx=10, pady=5,
sticky="e")

entry_password =
tk.Entry(window, show=""")

entry_password.grid(row=1,
column=1, padx=10, pady=5)

label_gender =
tk.Label(window,
text="Gender:")

label_gender.grid(row=2,
column=0, padx=10, pady=5,
sticky="e")

var_gender =
tk.StringVar(value="Male")

radio_male
tk.Radiobutton(window,
text="Male",
variable=var_gender,
value="Male")

160 |

Python: Building Skills for Software Development

Lab Practice

radio_male.grid(row=2,
column=1, padx=10, pady=5,
sticky="w")

radio_female =
tk.Radiobutton(window,
text="Female",
variable=var_gender,
value="Female")

radio_female.grid(row=2,
column=2, padx=10, pady=5,

sticky="w")

label_hobbies =
tk.Label(window,
text="Hobbies:")

label_hobbies.grid(row=3,
column=0, padx=10, pady=5,
sticky="e")

var_hobbyi1 =
tk.StringVar(value="Reading")

check_hobby1 =
tk.Checkbutton(window,
text="Reading",
variable=var_hobby1)

check_hobby1.grid(row=3,
column=1, padx=10, pady=5,
sticky="w")

var_hobby?2 =
tk.StringVar(value="Sports")

check_hobby?2
tk.Checkbutton(window,

text="Sports",
variable=var_hobby?2)

check_hobby2.grid(row=3,
column=2, padx=10, pady=5,
sticky="w")

var_hobby3
tk.StringVar(value="Music")

check_hobby3
tk.Checkbutton(window,
text="Music",
variable=var_hobby3)

check_hobby3.grid(row=3,
column=3, padx=10, pady=5,
sticky="w")

label_country =
tk.Label(window,
text="Country:")

label_country.grid(row=4,
column=0, padx=10, pady=5,
sticky="e")

countries = ["USA", "Canada",
"UK", "India", "Australia"]

listbox_country =
tk.Listbox(window,
selectmode=tk.SINGLE,
height=len(countries))

for country in countries:

listbox_country.insert(tk.END,
country)

Python: Building Skills for Software Development | 161

Lab Practice

listbox_country.grid(row=4,
column=1, padx=10, pady=>5)

label_address =
tk.Label(window,
text="Address:")

label_address.grid(row=>5,
column=0, padx=10, pady=5,
sticky="e")

text_address = tk.Text(window,
height=4, width=30)

text_address.grid(row=5,
column=1, columnspan=3,
padx=10, pady=>5)

button_register =
tk.Button(window,
text="Register",
command=register_user)

button_register.grid(row=6,
columnspan=4, pady=10)

Start the Tkinter event loop
window.mainloop()

76./*Create a Voice Recorder
using Python*/

Creating a voice recorder using
Python involves using the
sounddevicelibrary for
capturing audio and the

waviolibrary for saving the

recorded audio as a WAV file

#pip install sounddevice

#pip install wavio

#at first install above liberary

import sounddevice as sd

import wavio

def record_voice(duration,

samplerate=44100,

filename="output.wav"):
print("Recording...")

Record audio
recording =

sd.rec(int(samplerate *

duration),

samplerate=samplerate,
channels=2, dtype='int16')
sd.wait()

print("Recording complete.")

Save as WAV file
wavio.write(filename,
recording, samplerate,
sampwidth=3)

print(f"Audio saved as
{filename}")
if_name__=="_main__":

Set the duration of the
recording in seconds
recording_duration=5
Specify the filename for the
output WAV file
output_filename =
"output.wav"
record_voice(recording_duratio
n, flename=output_filename)

162 |

Python: Building Skills for Software Development

Lab Practice

77./*Create a Screen recorder
using Python*/

Creating a screen recorder in
Python can be achieved using
the pyautoguilibrary for
capturing screenshots and the
imageio library for creating a
video from the captured frames

#pip install pyautogui

#pip install imageio

#at first install above liberary
import pyautogui

importimageio

import os

importtime

def
record_screen(output_filename
="output.mp4", duration=10,
fps=30):

print("Recording...")

Specify the screen
resolution
screen_size = pyautogui.size()

Set up the outputfile
output_path
os.path.join(os.getcwd(),
output_filename)

writer =
imageio.get_writer(output_path
, fps=fps)
start_time =time.time()

try:

while time.time() -
start_time< duration:
Capture screenshot
screenshot =

pyautogui.screenshot()

Convert the screenshot
toaNumPy array

frame =
imageio.core.util. Array(screens
hot)

Append the frame to the
video
writer.append_data(frame)

except Keyboardinterrupt:

pass

finally:
writer.close()

print(f"Recording complete.

Video saved as
{output_filename}")
if_name__ =="__main__":

Set the duration of the
recording in seconds
recording_duration=10

Specify the filename for
the output video file
output_filename =
"output.mp4"
record_screen(output_filename
, duration=recording_duration)

78./*Draw aTic Tac Toe Board
using Python-Turtle*/
importturtle
defdraw_board():
turtle.speed(2) # Set turtle
speed (1=slow, 10=fastest)

Draw horizontal lines
turtle.penup()
turtle.goto(-150, 50)
turtle.pendown()
turtle.forward(300)

Python: Building Skills for Software Development

| 163

Lab Practice

turtle.penup()
turtle.goto(-150, -50)
turtle.pendown()
turtle.forward(300)

Draw vertical lines
turtle.penup()
turtle.goto(-50, 150)
turtle.right(90)
turtle.pendown()
turtle.forward(300)
turtle.penup()
turtle.goto(50, 150)
turtle.pendown()
turtle.forward(300)
turtle.hideturtle()

Hide turtle after drawing
if __name__ == "
draw_board()
turtle.done()

__main__":

79./*Create pong game using
Python —Turtle*/

import turtle

Set up the screen

screen =turtle.Screen()
screen.title("Pong Game")
screen.bgcolor("black")
screen.setup(width=600,
height=400)

#Paddle A
paddle_a=turtle.Turtle()
paddle_a.speed(0)
paddle_a.shape("square")
paddle_a.color("white")
paddle_a.shapesize(stretch_wi
d=1, stretch_len=>5)
paddle_a.penup()

paddle_a.goto(-250, 0)
Paddle B
paddle_b =turtle.Turtle()
paddle_b.speed(0)
paddle_b.shape("square")
paddle_b.color("white")
paddle_b.shapesize(stretch_wi
d=1, stretch_len=5)
paddle_b.penup()
paddle_b.goto(240, 0)
Ball
ball =turtle.Turtle()
ball.speed(40)
ball.shape("square")
ball.color("white")
ball.penup()
ball.goto(0, 0)
ball.dx = 2 # Ball movement
speedinthe x-axis
ball.dy = -2 # Ball movement
speedinthe y-axis
Paddle movement functions
def paddle_a_up():

y =paddle_a.ycor()

ify <190:

y+=20
paddle_a.sety(y)
defpaddle_a_down():

y =paddle_a.ycor()

ify>-190:

y-=20

paddle_a.sety(y)
def paddle_b_up():

y =paddle_b.ycor()

ify <190:

y+=20

164 |

Python: Building Skills for Software Development

Lab Practice

paddle_b.sety(y)
defpaddle_b_down():

y =paddle_b.ycor()

ify>-190:

y-=20
paddle_b.sety(y)
Keyboard bindings
screen.listen()
screen.onkey(paddle_a_up,
W)
screen.onkey(paddle_a_down,
"s")
screen.onkey(paddle_b_up,
"Up")
screen.onkey(paddle_b_down,
"Down")
Main game loop
while True:
screen.update()

Move the ball
ball.setx(ball.xcor() + ball.dx)
ball.sety(ball.ycor() + ball.dy)

Border checking

if ball.ycor() > 190 or
ball.ycor() <-190:
ball.dy *= -1 # Reverse the
direction when hitting the top or
bottom border

Paddle collisions

if (ball.xcor() > 235 and
ball.xcor() < 240) and
(ball.ycor() <paddle_b.ycor() +
50 and ball.ycor()
>paddle_b.ycor() - 50):
ball.color("blue")
ball.setx(235)
ball.dx *=-1
elif (ball.xcor() < -240 and
ball.xcor() > -245) and

(ball.ycor() <paddle_a.ycor() +
50 and ball.ycor()
>paddle_a.ycor() - 50):
ball.color("red")

ball.setx(-240)

ball.dx *=-1

80./*Python program to read
CSV file using Pandas*/

import pandas as pd

Specify the path to your CSV
file

csv_file_path ="your_file.csV'

Read the CSV file into a
DataFrame

df = pd.read_csv(csv_file_path)
Display the DataFrame
print(df)

81./*Python program to create
data frame using Pandas*/
import pandas as pd
Sample data
data ={'Name': [lakshay, 'palak’,
‘priyansh’],

‘Age':[14,11,9],

'City": ['nainital’, 'ramnagar’,
‘haldwani']}
Create a DataFrame
df = pd.DataFrame(data)
Display the DataFrame
print(df)

82./*Python program to
remove column using
Pandas*/i

mport pandas as pd

Python: Building Skills for Software Development | 165

Lab Practice

Create a DataFrame
data ={'Name': [lakshay, 'palak’,
'priyansh'],

'‘Age': [14,11,9],

'City": ['nainital’, 'ramnagar’,
‘haldwani'l}
df = pd.DataFrame(data)
Display the original
DataFrame
print("Original DataFrame:")
print(df)
Remove the 'Age’ column
df =df.drop('Age’, axis=1)
Display the DataFrame after
removing the 'Age' column

print("\nDataFrame after
removing 'Age' column:")

print(df)

83./*Python program to
search column using
Pandas*/
import pandas as pd
Create a DataFrame
data = {'Name': [lakshay, 'palak’,
‘priyansh'],

'‘Age': [14,11,9],

‘City": ['nainital’, 'ramnagar’,
‘haldwani'l}
df =pd.DataFrame(data)

Display the original
DataFrame

print("Original DataFrame:")
print(df)

Search for rows where the
‘City' column is 'San
Francisco'

search_result = df[df['City'] ==
‘San Francisco']

Display the search result
print("\nSearch result for 'City’
column containing 'San
Francisco":")

print(search_result)

84./*Python program to use
matplotliberary*/
import pandas as pd
import matplotlib.pyplot as plt
Create a DataFrame
data ={'Name': [lakshay, 'palak’,
‘priyansh’],

'‘Age':[14,11,9],

‘City": ['nainital', 'ramnagar’,
‘haldwani']}
df =pd.DataFrame(data)

Display the DataFrame
print("Original DataFrame:")
print(df)

Plotthe 'Age' column
plt.plot(df['Age'], marker='o0',
linestyle="-")

plt.title('Age Distribution’)

plt.xlabel('Index’)
plt.ylabel('Age')
plt.grid(True)
plt.show()

166 |

Python: Building Skills for Software Development

Lab Practice

85./*Python program to create
scatterplot using
matplotliberary*/

import matplotlib.pyplot as plt

Sample data
x=[1,2,8,4,5]
y=[2,3,5,7,11]

Create scatter plot
plt.scatter(x, y)

#Title and labels
plt.title('Scatter Plot Example')
plt.xlabel('X values')
plt.ylabel('Y values')

Show the plot

plt.show()

86./*Python program to create
bar plot wusing
matplotliberary*/

import matplotlib.pyplot as plt

Sample data

labels = ['A', 'B', 'C', 'D', 'E']
values =[3, 7, 2, 5, 8]

Create bar plot
plt.bar(labels, values)

Title and labels

plt.title('Bar Plot Example')
plt.xlabel('Labels'’)
plt.ylabel('Values')

Show the plot

plt.show()

87./* Python program to
show stack implementation*/
class Stack:

def__init__(self):

self.items =[]
defis_empty(self):
return len(self.items)==0
def push(self, item):
self.items.append(item)
def pop(self):
if not self.is_empty():
return self.items.pop()
else:
raise IndexError("pop
from an empty stack")
def peek(self):
if not self.is_empty():
return self.items[-1]
else:
raise IndexError
("peek from an empty
stack")
def size(self):
return len(self.items)
Example usage:
if _name__=="_main__":
stack = Stack()
stack.push(1)
stack.push(2)
stack.push(3)
print("Current stack:",
stack.items)
print("Stack size:",
stack.size())
print("Peek:", stack.peek())
print("Pop:", stack.pop())
print("Current stack:",
stack.items)

88./* Python program to show
queue implementation*/
class Queue:
def__init__(self):
self.items =[]

Python: Building Skills for Software Development

| 167

Lab Practice

defis_empty(self):

return len(self.items)==0
def enqueue(self, item):
self.items.append(item)
def dequeue(self):
if not self.is_empty():
return
self.items.pop(0)
else:
raise IndexError
("dequeue from an empty
queue")
def peek(self):
if not self.is_empty():
return self.items[0]
else:
raise IndexError("peek
from an empty queue")
def size(self):
return len(self.items)

Example usage:

if __name__ =="_ main__":

queue =Queue()
queue.enqueue(1)
queue.enqueue(2)
queue.enqueue(3)
print("Current queue:",
queue.items)
print("Queue size:",
queue.size())
print("Peek:", queue.peek())
print("Dequeue:",
queue.dequeue())
print("Currentqueue:",
queue.items)

89./* Python program to show
linked listimplementation*/
class Node:

def__init__(self, data):
self.data=data
self.next=None

class LinkedList:

def__init__(self):
self.nead =None

def append(self, data):
new_node = Node(data)
if not self.head:
self.head =new_node
return
last_node =self.head
while last_node.next:
last_node =
last_node.next
last_node.next=
new_node
def prepend(self, data):
new_node = Node(data)
new_node.next=
self.head
self.head =new_node
def delete_node(self, key):
current_node = self.head
if current_node and
current_node.data==
key:
self.head =
current_node.next
current_node =None
return prev=None
while current_node and
current_node.data !=
key:
prev =current_node
current_node =
current_node.next
if current_node is

168

| Python: Building Skills for Software Development

Lab Practice

None:

return prev.next=

current_node.next

current_node =

None
def print_list(self):

current_node = self.head
while current_node:
print(current_node.data)
current_node =
current_node.next
Example usage:
if_name__=="__main__"

Il=LinkedList()
ll.append(1)
ll.append(2)
ll.append(3)
ll.append(4)
ll.prepend(0)
Il.print_list()
ll.delete_node(3)
print("After deleting 3:")
[l.print_list()

90./* Python program to show

calculates the mean, median,

mode, variance, and standard

deviation*/

import numpy as np

from scipy import stats

def

calculate_statistics(numbers):
mean=np.mean(numbers)
median=np.median(number
s)
mode=stats.mode(numbers
)[0][0]

variance = np.var(numbers)

std_dev =np.std(numbers)

return mean, median, mode,
variance, std_dev
if_name__=="__main__"
numbers=[2,4,4,4,5,5,7,9]
mean, median, mode, variance,
std_dev=
calculate_statistics(numbers)

print("Mean:", mean)

print("Median:", median)

print("Mode:", mode)
print("Variance:", variance)
print("Standard Deviation:",
std_dev)

91./* Python program to
include API*/
import requests
def fetch_data_from_api(url):
try:
response =
requests.get(url)
response.raise_
for_status()
Raise an exception for HTTP
errors (4xx or 5xx)
data =response.json()
#Convert the response to
JSON #format
return data
except requests.exceptions.
RequestException as e:
print("Error fetching
data:", e)
return None
Example usage:
if_name__=="__main__":
url ="https://jsonplaceholder
.typicode.com/posts/1"

Python: Building Skills for Software Development | 169

Lab Practice

api_data=
fetch_data_from_api(url)
if api_data:
print("API
Response:", api_data)

92./* Python program to
include GOOGLE MAP API*/
import requests
def
geocode_adrs (address):
api_key ="YOUR_API_KEY'
Replace 'YOUR_API_KEY'
with your actual Google Maps
APl key
url =f'https://maps.google
apis.com/maps/api/
geocode/json?address
={address} &key={api_key}'
try:
response =
requests.get(url)
response.raise_for
_ status()
data = response.json()
if data['status']=="'OK":
location=
data['results'][0]
['geometry'|['location']
latitude =location['lat']
longitude=
location['Ing']
return latitude,
longitude
else:
print("Geocoding
failed:", data['status'])

return None, None
except
requests.exceptions.
RequestException as e:
print("Error geocoding
address:", e)
return None, None
Example usage:
if _name__==" main__":
address = "1600
Amphitheatre Parkway,
Mountain View, CA"
latitude, longitude =
geocode_adrs(address)
if latitude is not None and
longitude is not None:
print("Latitude:",
latitude)
print("Longitude:",
longitude)

170 |

Python: Building Skills for Software Development

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178

